
Progressive Reasoning over Recursively-Defined Strings

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar

National University of Singapore
trinhmt,hiepcd,joxan@comp.nus.edu.sg

Abstract. We consider the problem of reasoning over an expressive constraint
language for unbounded strings. The difficulty comes from “recursively defined”
functions such as replace, making state-of-the-art algorithms non-terminating.
Our first contribution is a progressive search algorithm to not only mitigate the
problem of non-terminating reasoning but also guide the search towards a “mini-
mal solution” when the input formula is in fact satisfiable. We have implemented
our method using the state-of-the-art Z3 framework. Importantly, we have en-
abled conflict clause learning for string theory so that our solver can be used
effectively in the setting of program verification. Finally, our experimental evalu-
ation shows leadership in a large benchmark suite, and a first deployment for an-
other benchmark suite which requires reasoning about string formulas of a class
that has not been solved before.

Keywords: String Solving · Progressive Search · Termination · Web Security

1 Introduction

Web applications provide critical services over the Internet and handle sensitive data.
Unfortunately, many of them are vulnerable to attacks by malicious users. According
to the Open Web Application Security Project [16], the most serious web application
vulnerabilities include: (#1) Injection flaws (such as SQL injection) and (#3) Cross Site
Scripting (XSS) flaws. Both vulnerabilities involve string-manipulating operations and
occur due to inadequate sanitisation and inappropriate use of input strings provided
by users. Therefore, reasoning about strings is necessary to ensure the security of web
applications [18, 21].

In web applications, recursively defined string functions also play an important role.
For example, the string function replace which is used frequently in sanitizers in order
to prevent insecure user inputs, can be recursively defined as follows:

Y=replace(X,r,Z) def
= (X 6∈ /.? r .?/ ∧ Y=X) ∨

(X=X1·X2·X3·X4 ∧ X2·X3 ∈ /r/ ∧ length(X3)=1 ∧
X1·X2 6∈ /.? r .?/ ∧ Y=X1·Z·Y1 ∧ Y1=replace(X4,r,Z))

The first disjunct corresponds to the base case where the input X does not contain any
substring that matches the regular expression r. The resulting string Y will be the same
as X. In the other disjunct, the first substring of X that matches r is X2·X3. So we replace
this substring by Z and then make a recursive call for the remaining part X4. (The greedy
version, using as many characters as possible in the match against r, can be defined and
treated in a similar manner.)



Unfortunately, reasoning about unbounded strings defined recursively is in general
an undecidable problem. As a concrete example, string functions such as replace that
are applied to any number of occurrences of a string (even limited to single-character
strings) would make the satisfiability problem undecidable [7, 6]. We must therefore be
content with an incomplete solution.

Even so, we do not yet have an algorithm that is plausibly effective in practice. To
generally handle recursive functions, a state-of-the-art technique [21] is “unfold-and-
consume” which is to incrementally reduce recursive functions via splitting (and/or
unfolding) process, until their subparts are bounded with constant strings/characters
to be consumed. This technique has shown very promising results. However, because
the main purpose of [21] is vulnerability detection, i.e., generating attack inputs for
each satisfiable query, and that every query is invoked with a timeout limit, there was
less emphasis on the detection of unsatisfiable queries. By contrast, in the setting of
program verification, or in using verification technologies to speed up concolic testing
[12, 3], the problem of determining unsatisfiability becomes paramount. In short, we
can no longer depend on a timeout, and must seek a terminating algorithm as far as
possible.

The main contribution of this paper is an algorithm whose goal is to determine if a
string formula is unsatisfiable, and if not, to be able to generate a solution for it. The
key feature of our algorithm is a pruning method on the subproblems, in a way that
is directed. More specifically, our algorithm aims to detect non-progressive scenarios
(Section 4.2) with respect to a criterion of minimizing the “lexicographical length” of
the returned solution, if a solution in fact exists. Informally, in the search process based
on reduction rules, we can soundly prune a subproblem when the answer we seek can be
found more efficiently elsewhere. If a subproblem is deemed non-progressive, it means
if the original input formula is satisfiable, then another satisfiable solution of shorter
“length” will be found. If, on the other hand, the input formula is unsatisfiable, then any
pruning is obviously sound. A technical challenge we will overcome is that at the point
of pruning, the satisfiability of the input formula is unknown.

An additional important feature of our algorithm is applicable only when the input
formula is unsatisfiable. Here, we want to produce a set of conflict clauses, a general-
ization of the input formula, that is now known to be unsatisfiable (Section 5.2). The
benefits of such learning is of course well-known. It is, for example, at the heart of the
attractiveness of SMT solvers. However, the key technical challenge is, how conflict
clause learning can work in tandem with the pruning of non-progressive formulas, be-
cause at the time of pruning, again, the unsatisfiability of the input formula is unknown.

Finally, we present an experimental evaluation with two case studies. First is on
the well-known Kudzu benchmark [18] where we show that (a) our new algorithm
surpasses four state-of-the-art solvers in its ability to detect unsatisfiable formulas or
generate a model in satisfiable formulas (and in good running time), and (b) the number
of unsatisfiable cores is very small, thus paving the way to accelerate the consideration
of large collections of formulas. The second case study considers web applications used
in the Jalangi framework [19], and shows how we can deal with the replace operation
in string formulas. No other system has been demonstrated on this class of problems,
and thus the purpose of our evaluation is simply to show that we are applicable.



2 Motivation

The common reason for non-termination in string solving is non-progression. For ex-
ample, after applying some reduction steps, if the reduced problem is not easier to solve
than the original one, then it may lead to non-terminating computations. To illustrate,
let us first look at the JavaScript example in Figure 1.

1 function json_decode(str) {
2 str = str.replace(/ip/g, "ip address");
3 str = str.replace(/dom/g, "domain");
4 return str;}
5 function json_show(str) {
6 var arr = JSON.parse(str);
7 var c = arr[0].content.split("&");
8 var s = c[0]+" "+c[1];
9 document.getElementById("info").innerHTML = s;}

10 res = json_decode(input);
11 json_show(res);

Fig. 1: A JavaScript example using replace operation

The program takes as its input a JSON [10] string. Here is an example of a string input:

[{“content” : “ip=1.1.1.1&dom=nus.edu.sg” },
{“content” : “ip=0.0.0.0&dom=google.com” }]

Specifically, we store the JSON data in an array. Each element of the array is an object.
Inside an object, we declare a property with its name and its value (i.e., a {name : value}
pair). To access the value, we simply refer to the name of the property we need (e.g.,
we use a[0].content to access the value of the first element of the array a). In Figure 1,
the program first decodes the input string by replacing all occurrences of "ip" with
"ip address" and "dom" with "domain". Then it parses the decoded string into
an array arr, and splits the value of the first element of this array into two parts using
“&” delimiter. Finally, it shows the resulting string s in a web browser by updating the
innerHTML attribute of the info element.

Now, suppose we want to detect XSS vulnerabilities in the program. We then need
to determine the security sink and source of XSS attacks. Here, the security sink is
innerHTML, while the corresponding source is an input JSON string (i.e. input).
Next, against the sink, we define the specification for XSS attacks which is some (reg-
ular) grammar encoding a set of strings that would constitute an XSS attack. For sim-
plicity, we choose: all the strings that contain "<script". Lastly, in order to generate
a test input that leads to an XSS attack, we will need to solve the formula:

contains(s,"<script") ∧ tmp=replace(input,"ip","ip address")
∧ res=replace(tmp,"dom","domain") ∧ arr=parse(res) ∧

c=split(arr[0].content,"&") ∧ s=c[0]·" "·c[1]
To make it easier for presentation, we simplify the formula into:

res=replace(input,"ip","ip address") ∧
contains(res,"<script")



If we now perform some intuitive steps of “unfolding” the definition of replace, we will
reduce the simplified formula into two disjuncts. Since the first one is unsatisfiable due
to the conflict between res 6∈ /.? "ip" .?/ and contains(res,"<script"),
we proceed to find a solution in the second disjunct, that is

input=X1·"ip"·input1 ∧ X1·"i" 6∈ /.? "ip" .?/ ∧
res=X1·"ip address"·res1 ∧

res1=replace(input1,"ip","ip address") ∧
contains(res,"<script")

After applying the unfolding step some n−1 times, we still have to find a solution in
the following formula:

input=X1·"ip"·input1 ∧ X1·"i" 6∈ /.? "ip" .?/ ∧
res=X1·"ip address"·res1 ∧ input1=X2·"ip"·input2 ∧

X2·"i" 6∈ /.? "ip" .?/ ∧ res1=X2·"ip address"·res2 ∧ ... ∧
resn=replace(inputn,"ip","ip address") ∧

contains(res,"<script")
Obviously, this will lead us to a non-terminating computation.

As a matter of fact, non-termination is common in string solving. In addition to the
case of solving constraints on (JavaScript) recursive string operations (e.g. replace,
split, match), we also have non-termination when handling membership predicates
with unbounded Kleene-star regular expressions.

Example 1. Unbounded regular expressions:
X=Y·Z·T ∧ Y ∈ /a?/ ∧ Z ∈ /b?/ ∧ T ∈ /c?/ ∧

length(Y)=length(Z) ∧ length(Z)=length(T) ∧ X=X1·"d"·X2

Since the first 6 constraints state that X can be any string in the context-sensitive lan-
guage { an·bn·cn | n≥0 }, automata techniques and the alike which approximate strings
using context free grammars, are not able to handle this example. Instead, to generally
deal with unboundedness of regular expressions which are constructed by using Kleene-
star operators, state-of-the-art techniques [21, 22] represent the membership predicate
X∈/a?/ as an equation between string variable X and star(a,N) function which can be
defined recursively as below:

X=star(a,N) def
= (X = "") ∨ (X=a·star(a,M) ∧ N=M+1)

To facilitate the solving process, [21, 22] will need to apply the definition of star func-
tions to incrementally reduce them (according to the unfold-and-consume technique).
However, they cannot handle Example 1 as they will go into an infinite loop of searching
for a solution. We will discuss this example more in Section 4.

Finally, we note that the problem of non-terminating reasoning is not solely due
to the recursive definitions we employ in this paper. For example, the non-termination
problem also happens when we do splitting on unbounded string variables. Below is a
well-known example.

Example 2. Overlapping variables:
X · "a" = "b" · X



The classic work [15] is able to solve the satisfiability problem of word equations (and
not including recursively defined string operations). In this work, the big advance was
to discover a termination criteria within the reasoning steps, and prominent amongst
these was the “splitting” step. For the above example, such a step would split X in the
left hand side to obtain a new formula X·"a"="b"·X ∧ X="b"·Y . This can then
be simplified into Y·"a"="b"·Y ∧ X="b"·Y . Notice that the last formula is, in
some sense, equally difficult to solve as the original one. The huge contribution of [15]
was thus to provide a bound for the number of times such “non-progressive” steps that
needs to be made. However, the elaboration of this bound is extremely complex and is
not considered feasible for a direct implementation.

3 The Core Language
We introduce the core constraint language in Figure 2. In our implementation, the string
theory solver is a component of Z3 solver [9]. Though Z3 supports more primitive types,
we only mention string type and integer type in Fig. 2.

Fml ::= Literal | ¬ Fml | Fml ∧ Fml
Literal ::= As | Al
As ::= Tstr = Tstr
Al ::= Tlen ≤ m (m ∈ Cint)
Tstr ::= a (a ∈ Cstr)

| X (X ∈ Vstr)
| concat(Tstr, Tstr)
| replace(Tstr, Tregexpr, Tstr)
| star(Tregexpr,M) (M ∈ Vint,M≥0)

Tregexpr ::= a (a ∈ Cstr)
| (Tregexpr)

? | Tregexpr · Tregexpr
| Tregexpr + Tregexpr

Tlen ::= m (m ∈ Cint)
| M (M ∈ Vint)
| length(Tstr) | Σn

i=1(mi ∗ Tlen)

Fig. 2: The Syntax of Our Core Constraint Language

Variables: We deal with two types of variables: Vstr consists of string variables (X ,
Y , Z, T , and possibly with subscripts); and Vint consists of integer variables (M , N ,
P , and possibly with subscripts).
Constants: Correspondingly, we have two types of constants: string and integer con-
stants. Let Cstr be a subset of Σ? for some finite alphabet Σ. Elements of Cstr are
referred to as string constants or constant strings. They are denoted by a, b, and possi-
bly with subscripts. Elements of Cint are integers and denoted by m, n, and possibly
with subscripts.
Terms: Terms may be string terms or length terms. A string Tstr term (denoted D,
E, and possibly with subscripts) is either an element of Vstr, an element of Cstr, or
a function on terms. More specifically, we classify those functions into two groups:
recursive and non-recursive functions. An example of recursive function is replace,



while an example of non-recursive function is concat. The concatenation of string terms
is denoted by concat or interchangeably by · operator. For simplicity, we do not discuss
string operations such as match, split, exec which return an array of strings. We note,
however, these operations are fully supported in our implementation.

A length term (Tlen) is an element of Vint, an element of Cint, length function
applied to a string term, a constant integer multiple of a length term, or their sum.

In addition, Tregexpr represents regular expression terms. They are constructed from
string constants by using operators such as concatenation (·), union (+), and Kleene star
(?). However, regular expression terms are only used as parameters of functions such
as replace and star.

Following [21], we use the star function in order to reduce a membership predicate
involving Kleene star to a word equation. The star function takes two parameters as its
input. The first parameter is a regular expression term while the second is a non-negative
integer variable. For example, X ∈ (r)? is modelled as X = star(r,N), where N is a
fresh variable denoting the number of times that r is repeated.
Literals: They are either string equations (As) or length constraints (Al).
Formulas: Formulas (denoted F , G, H , I , and possibly with subscripts) are defined
inductively over literals by using operators such as conjunction (∧), and negation (¬).
Note that, each theory solver of Z3 considers only a conjunction of literals at a time.
The disjunction will be handled by the Z3 core. We use Var(F ) to denote the set of all
variables of F , including bound variables.

Define L to be the quantifier-free first-order two-sorted language over which the
formulas described above are constructed. This logic can be considered as equality logic
facilitated with recursive and non-recursive functions, along with length constraints.

As shown in [21], to sufficiently reason about web applications, string solvers need
to support formulas of quantifier-free first-order logic over string equations, member-
ship predicates, string operations and length constraints. Given a formula of that logic,
similarly to other approaches such as [21, 22], our top level algorithm will reduce mem-
bership predicates into string equations where Kleene star operations are represented as
recursive star functions. After such reduction, the new formula can be represented in
our core constraint language L in Figure 2.

4 Algorithm

In Section 4.1, we first present the background and limitation of existing methods. In
Section 4.2, we then present the foundations of our progressive algorithm, along with
the formal statements about its soundness and semi-completeness. Implementation de-
tails are discussed later in Section 5.

4.1 Preliminaries

This paper builds on top of the string solver S3 [21]. Essentially, the S3 solver is a string
theory plug-in built into the Z3 SMT solver [9], whose architecture is summarised as
follows. Z3 core component consists of three modules: the congruence closure engine, a
SAT solver-based DPLL layer, and several built-in theory solvers such as integer linear



arithmetic, bit-vectors. The congruence closure engine can detect equivalent terms and
then classify them into different equivalence classes which are shared among all theory
solvers. Each theory solver can consult the Z3 core to detect equivalent terms if needed.
In particular, the string theory solver has a bi-directional interaction with a built-in
integer theory solver [21, 22].

In the string theory solver, the search for a solution is driven by a set of rules.

Definition 1 (Derivation Rule) Each rule is of the general form

(RULE-NAME)
F∨m
i=1Gi

where F , Gi are conjunctions of literals1, F ≡
∨m
i=1Gi, and Var(F ) ⊆ Var(Gi). ut

An application of this rule transforms a formula at the top, F , into the formula at the
bottom, which comprises a number (m) of reducts Gi.

Definition 2 (Derivation Tree) A derivation tree for a formula F is obtained by ap-
plying a derivation rule R to F . If the rule produces the single reduct false, then the
tree comprises the single node labelled with F . Otherwise, let the reducts of R be Gi,
1 ≤ i ≤ m. Then the tree comprises a root node labelled with F and there are m child
nodes, labelled with Gi, 1 ≤ i ≤ m. ut

The concepts of descendant and ancestor nodes are defined in the usual way.
A derivation tree rooted at formula F is built using some search strategy. The search

strategy used by Z3 is a form of Depth First Search. This importantly means that the
process can be nonterminating even though there is a finite path leading to a satisfying
assignment to the variables in F . In navigating the construction of the derivation tree,
we backtrack when we encounter a false formula. If all the leaf nodes of a subtree
rooted at F are false , we can decide that the formula F is unsatisfiable.

On the other hand, when we encounter a formula for which no derivation rules can
be applied, we can in fact terminate and decide that F is satisfiable. To ensure the
soundness of this step, we employ a standard procedure of instantiating steps which
enumerates and thus performs a brute-force method. This method looks for satisfying
assignments for all the string variables in the root nodes of a dependency graph for string
variables — a string variable in a root node does not depend on the values of any string
variables. Consequently, when we terminate and declare satisfiability, it also means that
every string variable has been successfully grounded. This brute-force method is part
of Z3-str, S3, Z3-str2, and is also adopted by this paper. We will henceforth assume this
method tacitly, and not discuss it further.

Note that we control the branching order in navigating the derivation tree by dic-
tating the order of the rules to be applied, as well as the order in which the reducts to
be considered. In general, this order can affect significantly the overall performance of
the algorithm. However, because of the way our progressive algorithm works, and in
particular because of its pruning step (introduced later), the choice of order becomes
much less important. For this reason, when we present our algorithm in detail below,
we shall not impose any order on the application of derivation rules.

1 As per Figure 2.



We next discuss the set of rules used by our solver. Then we will illustrate the
application of rules and show an example of the derivation tree later in Example 3. The
set of rules is described in two parts:

• one-reduct rules: in Fig 3 and Fig 4;
• multi-reduct rules: in Fig 5.

We first describe the one-reduct rules in Figure 3. These rules are to propagate
length constraints, so that these constraints can be sent to integer theory solver. They
are triggered by the encounter with a string constant, a string variable, a concatena-
tion, and a string equation. In the figure, we use Var(F ), Constant(F ), Concat(F ), and
Equality(F ) to denote the set of variables, constants, concatenations, and equations
of F respectively. Note that we need to mark them in those corresponding sets so that
these rules are applied once for each constant, variable, concatenation, and equation.

(L-CST)
F

F ∧ length(a) = |a|
a ∈ Constant(F ) and |a| is the length of a string constant a

(L-VAR)
F

F ∧ length(X) ≥ 0
X ∈ Var(F )

(L-CAT)
F

F ∧ length(D · E) = length(D) + length(E)
D · E ∈ Concat(F )

(L-EQL)
F

F ∧ length(D) = length(E)
D = E ∈ Equality(F )

Fig. 3: Length Constraint Propagation Rules

We comment here that in a practical implementation, it is useful to have some more
rules, for example, to deal with membership predicates and string operations. But for a
more focused presentation, we shall not discuss them further.

(CON)
F ∧D = E

false
D,E are string terms and D 6= E

(SUB)
F ∧X = C

F [X/C] ∧X = C
X ∈ Var(F ) and C is (semi-)grounded

(SIM)
F ∧ a ·D · b = a · E · b

F ∧D = E
D,E are string terms

Fig. 4: Simplification Rules for String Constraints

Next, consider Figure 4 which shows three basic simplification rules. First, the
(CON) rule is to detect a contradiction in the string theory. Second, the (SUB) rule is to
substitute all variables X in F with C, where C is either grounded or semi-grounded.
A string is grounded if it is a constant string. It is called semi-grounded if it is either a
star function, or a concatenation of which at least a component is either grounded or



semi-grounded. For example, “a” is grounded, while “a”·Y2 is semi-grounded. Finally,
the (SIM) rule is to eliminate matching constant strings on both sides of an equation.
For each formula in the derivation tree, only one rule is applied at a time. For each
application, only one literal is considered at a time. For example, in (SUB) rule, only
X = C is involved. The choice of which literal to be involved is decided by Z3.

We comment here that in our implementation, we do employ other specialized rules.
For example, because the string theory solver also receives the information of length
constraints from the integer theory solver, we can craft a more specialized instance of
the (CON) rule of Figure 4 where a variant side condition is that the lengths of D and
E are different. Further, our implementation accommodates string operations such as
substring, indexOf, with new simplification rules. Again, for presentation purposes,
we shall not discuss these detailed rules further.

Finally, we present the remainder of our rules: multi-reduct rules, which we call
splitting rules. Before proceeding, note that in the rules in Fig 3 and Fig 4, no disjunction
is introduced. The disjunctions are only introduced in the splitting rules, which we will
present in two parts: the unfolding (UNF) rules, and the variable-splitting (SPL) rules.

(SPL-1)
F ∧D · a = b · E∨min(|a|,|b|)

i=1 (F ∧D = b
|b|−i
0 ∧ E = a

|a|
i ) ∨ (F ∧ ∃X1 : D = b ·X1 ∧X1 · a = E)

(SPL-2)
F ∧D1 · E1 = a ·D2∨|a|−1

i=0 (F ∧D1 = ai0 ∧ E1 = a
|a|
i ·D2) ∨ (F ∧ ∃X1 : D1 = a ·X1 ∧X1·E1 = D2)

(SPL-3)
F ∧D1 · E1 = D2 · b∨1

i=|b|(F ∧ E1 = b
|b|
i ∧D1 = D2 · bi0) ∨ (F ∧ ∃X1 : E1 = X1 · b ∧D1 ·X1 = D2)

(UNF-?1)
F ∧D1 ·D2 = star(a,N) · E2

(F ∧D1 ·D2 = E2) ∨ (F ∧ ∃M : D1 ·D2 = a · star(a,M) · E2 ∧N=M+1)

(UNF-?2)
F ∧D1 ·D2 = E1 · star(a,N)

(F ∧D1 ·D2 = E1) ∨ (F ∧ ∃M : D1 ·D2 = E1 · star(a,M) · a ∧N=M+1)

Fig. 5: Split rules and Unfold rules for star functions

An unfolding rule applies the definition of a recursive function, replacing the head with
the body that typically contains a number of disjuncts (cf. the replace function pre-
sented in Section 2). We describe such a rule using an unfolding rule schema (UNF) for
a recursive function E as follows:

(UNF)
F ∧D1 ·D2 = E ·D3∨
(F ∧D1 ·D2 = Ei ·D3)

E is defined as
∨
Ei

A variable-splitting rule is used to split a string variable into sub-variables. We shall
describe such a rule using a variable-splitting rule schema (SPL) as follows:

(SPL)
F ∧D1 ·D2 = E1 · E2

(F ∧D1=E1 ∧D2=E2) ∨ (F ∧ ∃Z : D1=E1·Z ∧ Z·D2=E2 ∧ length(Z)>0)

∨ (F ∧ ∃T : E1 = D1·T ∧D2 = T ·E2 ∧ length(T ) > 0)



The specific instances of (SPL) and (UNF) rules used in this paper are listed in Figure 5.
There are 3 split rules to deal with string equations and 2 unfold rules for star functions.
The notation aji denotes the substring of a from bound i to j.

We now discuss the relationship between the splitting rules and the issue of non-
termination. Intuitively, the aim of the splitting rules is to reduce/break the current for-
mula into “sub-formulas”, where the complexity is reduced. A problem arises when the
rule reduces the current formula into sub-formulas, where the complexity is actually
not reduced. In other words, even though we have reduced the formula, we are in fact
not any closer in finding a satisfying solution nor in finding a proof for unsatisfiability.
This is the main reason for non-termination.

Let us now illustrate, in more detail, the issue of non-termination. We use Exam-
ple 3, a simplified version of Example 1. Here, non-termination comes from dealing
with recursive function star which is used to represent Kleene star regular expressions.
We note that both Example 3 and Example 1 address the same non-progression problem
in dealing with unbounded strings. Our purpose in choosing Example 3 to present is for
simplicity.
Example 3. Recursive function star:

X = star(“a”, N) ∧X = Y1 · “b” · Z

(UNF-?1)
X = star(“a”, N) ∧X = Y1 · “b” · Z

...
(SUB)

X=“a”·star(“a”,M) ∧N=M+1 ∧X=Y1·“b”·Z

Y1·“b”·Z=“a”·star(“a”,M)∧N=M+1∧X=Y1·“b”·Z
(SPL-2)

Y1·“b”·Z=“a”·star(“a”,M)∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z
(SUB)

“a”·Y2·“b”·Z=“a”·star(“a”,M)∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z
(SIM)

Y2·“b”·Z=star(“a”,M) ∧ Y1=“a”·Y2 ∧N=M+1 ∧X=Y1·“b”·Z
(UNF-?1) ... Y2·“b”·Z=“a”·star(“a”, P )∧

(SPL-2)
M=P+1∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z

Y2·“b”·Z=“a”·star(“a”, P )∧Y2=“a”·Y3∧

(SUB)
M=P+1∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z

“a”·Y3·“b”·Z=“a”·star(“a”, P )∧Y2=“a”·Y3∧

(SIM)
M=P+1∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z

Y3·“b”·Z=star(“a”, P )∧Y2=“a”·Y3∧

(UNF-?1)
M=P+1∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z

...

Fig. 6: Derivation Tree for Example 3

Figure 6 summarizes the main steps of solving Example 3. (For simplicity, we ignore
existential variables.) Similarly to solving Example 1, here we also need to unfold the
definition of star(“a”, N ) function and normalize the formula to DNF. An application
of the unfold rule (UNF-?1) would result in a disjunction of two reducts:



X=“” ∧X=Y1·“b”·Z and
X=“a”·star(“a”,M) ∧N=M+1 ∧X=Y1·“b”·Z

The first reduct leads to a contradiction:

(SUB)
X=“” ∧X=Y1·“b”·Z

(CON)
X=“” ∧ “”=Y1·“b”·Z

false

This contradiction appears in the tree depicted in Figure 6, but is hidden in the part of
the tree that was abbreviated away for brevity.

In the second reduct, by substituting X with Y1·“b”·Z, we introduce a new con-
straint Y1·“b”·Z=“a”·star(“a”,M). Now the only way to proceed is to split Y1 into
two parts: “a” and Y2 (for brevity, we omitted the base case where Y1 = “”). After
substituting Y1 with “a”·Y2 and simplifying the formula, we obtain a new constraint:
Y2·“b”·Z=star(“a”,M). If we repeat this process of unfolding the definition of star
function, clearly we will go into an infinite loop.

4.2 Progressive Search Strategy

As mentioned earlier, the key idea to achieve progression is to prune away a subtree
when we are sure that a shorter solution can be found elsewhere. We first need to de-
fine a measure to decide which solution is shorter. This measure is parameterized by a
sequence of variables. We use σ, τ to denote sequences.

Definition 3 (Lexical length of a solution) Given a formulaF , let σ=(x1, x2, . . . , xn)
be a sequence of variables constructed from a non-empty subset of Var(F ). For each
solution α of F , i.e. α is an assignment [x1=a1, x2=a2, . . . , xn=an, . . . ], the lexical
length of α is defined as a n-tuple (length(a1), length(a2), . . . , length(an)). We
use Lenσ(α) to denote the lexical length of α w.r.t. the sequence σ. ut

We now use a lexical order to sort the solution set of a formula F based on the lexical
length of each solution. If F has a solution then its minimum lexical length w.r.t. a
sequence σ, denoted by l(σ, F ), is defined as the lexical length of a minimal solution
of F . If F has no solution then its minimum lexical length is denoted by >. We assume
that ∀σ, F : l(σ, F )≤>. We now can compare two arbitrary formulas based on their
minimum lexical length of solutions.

Definition 4 (Total order for formulas) Given two formulas F and G and let σ be a
sequence of variables constructed from a non-empty subset of the common variables of
F and G, a total order �σ is defined as follows:

F �σ G
def
= l(σ, F ) ≤ l(σ,G) ut

We define equality =σ and strict inequality ≺σ in the obvious way. We now outline
important properties of ≺σ:



• [Prop-0]:
If F ⇒ G then for all sequence σ such that ∅ ⊂ Var(σ) ⊆ Var(F ) ∩ Var(G), we
have G �σ F

Proof Outline. Since F ⇒ G, any solution of F will be a solution of G. Therefore,
for any sequence σ such that ∅ ⊂ Var(σ) ⊆ Var(F ) ∩ Var(G), the minimal
solution of F w.r.t. σ will be a solution of G. So for all such σ, l(σ,G) ≤ l(σ, F ).
By Definition 4, for all such σ, we have G �σ F . ut

• [Prop-1]:
If F ≡ (G ∨H) where Var(F ) ⊆ Var(H) and ∃σ : F ≺σ G then F =σ H

Proof Outline. Since ∃σ : F ≺σ G, then F must be satisfiable. Now let α be a
minimal solution of F w.r.t. σ.
With such α, and since F ≺σ G, it follows that α is not a solution ofG. Now, given
F≡(G ∨H), α must be a solution of H . This implies F ⊀σ H .
Further, since H ⇒ F , by [Prop-0], for all τ such that ∅ ⊂ Var(τ) ⊆ Var(F ) ∩
Var(H), we have F �τ H . Since ∅ ⊂ Var(σ) ⊆ Var(F ) ∩ Var(G) ⊆ Var(F ) =
Var(F ) ∩ Var(H), we have F �σ H .
Finally, all the above culminates into F =σ H . ut

• [Prop-2]:
If (G ∨H)⇒ F and ∃σ : F =σ G then F =σ (G ∨H)

Proof Outline. Let σ be such that F =σ G. Given (G ∨H)⇒ F , by [Prop-0], for
all τ such that ∅ ⊂ Var(τ) ⊆ Var(F ) ∩ Var(G ∨ H), we have F �τ (G ∨ H).
Since ∅ ⊂ Var(σ) ⊆ Var(F ) ∩ Var(G) ⊆ Var(F ) ∩ Var(G ∨ H), this in turn
implies F �σ (G ∨H).
Also, F =σ G implies F ⊀σ (G ∨H).
Thus, F =σ (G ∨H). ut

• [Prop-3]:
If ∃σ : F =σ G and τ is a prefix of σ then F =τ G

Proof Outline. Let σ be such that F =σ G. Suppose l(τ, F ) is (i1, . . . , i|τ |). Then,
because τ is a prefix of σ, we have l(σ, F ) = (i1, . . . , i|τ |, j1, . . . , j|σ|−|τ |) for
some j1, . . . , j|σ|−|τ |. Since F =σ G, then l(σ,G) is (i1, . . . , i|τ |, j1, . . . , j|σ|−|τ |).
It follows that l(τ,G) is (i1, . . . , i|τ |). Therefore, F =τ G. ut

Among them, we want to direct the attention towards the third property. It is used to
ensure the soundness of the proposed method later. It states that if two formulas F and
G have the same minimum lexical length of solutions w.r.t. a sequence σ, then they also
have the same minimum lexical length of solutions w.r.t. a sequence τ , where τ is a
prefix of σ.

Now we show how to prune a derivation subtree when we are sure that a solution
with shorter lexical length can be found elsewhere. We do this by augmenting the strat-
egy already described in Section 4.1 with a new step which enables us to prune the
proof tree.



Definition 5 (Progressive Pruning) Let there be a derivation tree rooted at an input
formula I , and let τ be a sequence of all the variables of I . Let F be a formula labelling
a node in the tree. A set of prunable subtrees of F is a set of its descendants Gi such
that there exists a sequence σ constructed from all variables of F satisfying the two
conditions:
• τ is a prefix of σ and
• F ≺σ Gi.

We then prune derivation subtrees rooted at formulas Gi. ut

The first condition ensures that a minimal solution of a formula F w.r.t. a sequence of
all variables of F is also a minimal solution of F w.r.t. a sequence of all variables of
the input formula I (according to [Prop-3]). Meanwhile, the second condition ensures
that whenever we prune Gi, we still preserve a minimal solution of formula F w.r.t. a
sequence of all of the variables of F .

Input: I : Fml , τ : a sequence on Var(I)
Output: SAT/UNSAT

〈1〉 if SOLVE(I , τ , ∅) return SAT else return UNSAT

function SOLVE(H : Fml, σI: a sequence, γ: a list of pairs of a formula and a sequence)
〈2〉 if (H ≡ false ) return false

〈3〉 if (there is no rule to apply) return true

〈4〉
∨
Gi ← APPLYRULE(H) /* Apply a derivation rule */

〈5〉 Let Υ be the set of all the reducts Gi
〈6〉 foreach reduct G ∈ Υ do /* Choose G by following Z3 heuristics */
〈7〉 if (G contains a recursive term or a non-grounded concatenation)
〈8〉 if (∃(F, σ) ∈ γ s.t. F ≺σ G) return false /* PRUNE !!! */
〈9〉 Let σH be a sequence on Var(H) s.t. σI is a prefix of σH /* CONDITION 1 */
〈10〉 γ ← γ ∪ 〈H,σH〉
〈11〉 endif
〈12〉 if SOLVE(G, σI, γ) return true

〈13〉 if (G contains a recursive term or a non-grounded concatenation)
〈14〉 γ ← γ \ {H,σH}
〈15〉 endfor
〈16〉 return false

end function
Algorithm S3P: Progressive Search

We now present our algorithm as Algorithm S3P. Line 2 corresponds to the case
when we find a contradiction. In Line 6, we iterate over the set of sub-formulas; the or-
dering between them is not important. (In fact, in our implementation, we simply follow
the heuristics of Z3.) Line 8 represents the key feature of our algorithm; it implements
our pruning step (by returning false). Line 9 prepares for the pruning of a descendant of
the current formula H (by ensuring that the first condition of Definition 5 is met).



Theorem 1 (Soundness) Given an input formula I , if Algorithm S3P

• returns SAT: then I is satisfiable;
• returns UNSAT: then I is unsatisfiable.

Proof Outline. We assume that:

• the standard search strategy represented by not employing the pruning step is sound,
and

• we employ a sound and complete integer theory solver.

In other words, we only need to prove the soundness of the pruning step. More specifi-
cally, we need to prove the soundness of the return in line 8 of Algorithm S3P. In case
I is unsatisfiable, the pruning is trivially sound; otherwise, we proceed by proving that
a minimal solution of I , w.r.t. a sequence τ of all of its variables, is always preserved in
the (remaining) tree after a subtree is pruned.

Let F0 be a formula in the derivation tree, and σ be a sequence of all the vari-
ables of F0. Let Fi(1≤i≤n) be other descendants of I , ie. not including F0, such that
I≡

∨n
i=0 Fi. Let Gj(0≤j≤m) be descendants of F0 such that F0≡

∨m
j=0Gj . Finally,

let H1 ≡
∨n
i=1 Fi, and H2 ≡

∨m
j=1Gj .

By the design our algorithm, specifically line 9, we have that τ is a prefix of σ. Now
we prove that

if F0 ≺σ G0, then I =τ (H1∨H2) (1)

Since F0 is a formula in the derivation tree, then F0 ⇒ I . Since Var(I) ⊆ Var(F ), by
[Prop-0], we have I �τ F0, which can be separated into two cases:

• Case I ≺τ F0. By [Prop-1], we have I =τ
∨n
i=1 Fi, ie. I =τ H1.

• Case I =τ F0. As F0 ≺σ G0, by [Prop-1], we have F0 =σ
∨m
i=1Gi, ie. F0 =σ H2.

By [Prop-3], we have F0 =τ H2. By transitivity, I =τ F0 ∧ F0 =τ H2 implies
I =τ H2.

Since (H1 ∨ H2) ⇒ I , and by [Prop-2], we have that property (1) holds in these two
cases. ut

It can be seen that the first condition of the pruning step is very important. It is used in
the second case of the above proof, in order to have the deduction from F0 =σ H2 to
F0 =τ H2. Suppose Var(τ) = {x1, .., xn}. The condition guarantees that if a minimal
solution of F0 w.r.t. σ is [x1 = a1, .., xn = an, y1 = b1, .., ym = bm], then a minimal
solution of F0 w.r.t. τ is [x1 = a1, .., xn = an]. Similarly, a minimal solution of H2

w.r.t. τ is also [x1 = a1, .., xn = an]. As such, the deduction is correct.
We now consider the completeness of Algorithm S3P. Before we can formalize this

property, we need to discuss the condition check in line 8. This check determines the
lexical order between two formulas, and is by no means a primitive operation. In fact,
we do not know if the check is, in general, decidable. Our completeness result below
nevertheless assumes that we have a decision procedure for this check. Later, in Section
5.1, we present an implementation which, though not a decision procedure, is sound
and practical. We follow this up in Section 6 with an experimental evaluation.



Theorem 2 (Semi-Completeness) Suppose the given input formula I is satisfiable.
Then Algorithm S3P will return SAT, and produce a minimal solution w.r.t. some se-
quence τ of all the variables of I .

Proof Outline. We first prove that for every formula F in the derivation tree, Algo-
rithm S3P will terminate and apply a finite number of splitting rules for F . We assume
it is clear that an inifinite number of applications of rules (CON), (SUB) and (SIM) can
only occur with an infinite number of splitting rules.

If F is unsatisfiable then the progressive algorithm will definitely detect that I≺τF .
As such, it will return false in line 8 of Algorithm S3P. So there is no application of
splitting rules for F .

If F is satisfiable, we prove the following: for every instance of splitting rules, in
each recursive case, the lower bound of at least one string variable of the input formula
is increased. We refer to this as property (2).

We call variables of the input formula original variables. We will consider only the
case of the (SPL) rule; others have a similar proof.

The following (SPL) rule is triggered when a string variable is involved, as opposed
to a general string term.

G ∧X1 ·X2 = Y1 · Y2
(G ∧X1=Y1 ∧X2=Y2) ∨ (G ∧ ∃Z : X1 = Y1·Z ∧ Z·X2 = Y2 ∧ length(Z)>0)

∨(G ∧ ∃T : Y1 = X1·T ∧X2 = T ·Y2 ∧ length(T ) > 0)

Suppose X1, X2, Y1, Y2 are original variables in I . Because the first reduct formula
above does not introduce any new concatenation operation, we can consider this for-
mula the “base case” while the other two are “recursive cases” where the recursive
terms are concatenations. In the second and third reduct formulas, the lower bounds of
X1 and Y1 (resp.) are increased. Each of these two cases introduces two new concate-
nations, that is Y1·Z,Z·X2, and X1·T, T ·Y2. These 4 concatenations involve two new
variables Z and T .

If the following applications of (SPL) rule are involved with either Y1, X2, X1,
or Y2, then property (2) continues to hold. Otherwise, if the following applications of
(SPL) rule are involved with either Z or T , then the increase of the lower bounds of
those new variables will lead to the increase of the lower bounds of the corresponding
original variables. As such property (2) holds for the (SPL) rule.

After a finite number of applications of splitting rules, suppose we have F ≡
∨
Hi.

Because of property (2), for every reduct Hi that contains recursive term(s) (or non-
grounded concatenations), there exists an original variable X whose lower bound is
greater than n, where n is the length of X in l(τ, I). This means all of those reduct
formulas have to be discharged in line 8 of Algorithm S3P. In other words, there is no
application of splitting rules for Hi. So Algorithm S3P terminates.

We prove the second part of this theorem by contradiction. W.l.o.g. suppose Algo-
rithm S3P finds a solution in a formula F in the derivation tree rooted at I . Suppose
it is not a minimal solution of I w.r.t. a sequence τ of all of its variables. Because the
progressive algorithm definitely detect that I ≺τ F , F has already been pruned in line 8
of Algorithm S3P. This is clearly a contradiction. ut



5 Implementation

We first show how to implement the pruning step of our search algorithm. Then we
present the conflict clause learning for string theory, especially in the setting of Z3.

5.1 The Pruning Step

To implement the pruning step of the Algorithm S3P, we have to keep track of the set
γ which contains pairs of the current formula H and some sequence σH of all of the
variables of H . When backtracking, such pair will be removed from γ correspondingly.
Let τ be the sequence of all of the variables of the input formula I . The sequence σH

is constructed by concatenating the sequence τ with additional variables from Var(H).
Specifically, σH = τ � δ where Var(δ) = Var(H) \ Var(τ). For Example 3, after the
first unfolding:

τ is (N,X, Y1, Z) and γ is {(X = star(“a”, N) ∧X = Y1 · “b” · Z, τ)}.
We now show how to implement the condition check in line 8 of Algorithm S3P.

Suppose the current formula is G, if

• we find a pair (F , σ) in γ and a substitution θ such that Gθ ⇒ F , and
• the substitution θ is a progressive substitution (as defined in Definition 6 below)

w.r.t. a sequence σ.
then the condition check is satisfied. Obviously, θ must not introduce new conflicts in
Gθ, which prevents Gθ from being false trivially.

Definition 6 (A progressive substitution) Let G be a formula, and σ be a sequence
of subset variables of G. A substitution θ is progressive w.r.t. a sequence σ if for every
solution α of G, there exists a solution β of Gθ such that Lenσ(β) < Lenσ(α). ut

For Example 3, in the second unfolding, the current formula is
G ≡ Y2·“b”·Z=star(“a”,M) ∧ Y1=“a”·Y2 ∧N=M+1 ∧X=Y1·“b”·Z

Obviously, there exists F ≡ X = star(“a”, N) ∧X = Y1 · “b” · Z and a substitution
θ = [M/N,N/N+1, X/“a”·X,Y1/“a”·Y1, Y2/Y1, Z/Z], such that the implication
check Gθ ⇒ F succeeds. Furthermore, the substitution θ is progressive w.r.t. the
sequence τ , that is (N,X, Y1, Z). This is because if length(N) = k in a solution α (if
any) of G, we have length(M) = k − 1. Then, we have length(N) = k − 1 in the
corresponding solution α′ of Gθ. Because Lenτ function returns a 4-tuple whose first
element is length(N), θ is progressive. As a result, we can stop the second unfolding.

Lemma 1. The implementation of the pruning step is sound

Proof Outline. Let G be the current formula and F , σ, θ be such that the condition
check is satisfied. According to the construction of σ, the sequence of additional vari-
ables of a formula F follows the variables of the input formula. Thus, the first condition
of the pruning step is satisfied. For the second condition, we already know that G is a
descendant of F . We now prove that F ≺σ G.

By Definition 6, because θ is progressive, there exists a solution β of Gθ such
that Lenσ(β) < l(σ,G). Next, because the implication check Gθ ⇒ F succeeds, β
is also a solution of F , which means l(σ, F ) ≤ Lenσ(β). By transitivity, we have
l(σ, F ) < l(σ,G). In short, we have F ≺σ G. ut



5.2 Conflict Clause Learning

We present our conflict clause learning technique for string theory, with the focus on
the case when non-progression is detected. Specifically, in the implementation of the
pruning step, suppose there exists (F, σ) in γ and a substitution θ such thatGθ ⇒ F and
θ is progressive w.r.t. σ. A corollary of Lemma 1 is that we have F ≺σ G (see the proof
of Lemma 1). Now, in addition to returning false as in line 8 of Algorithm S3P, we also
mark Ĝ as a possible conflict clause. We derive Ĝ from G by removing all equations
in solved form which is defined for both string and integer theories as below. If later
we can not find any solution in solving F , then we can conclude F is unsatisfiable and
produce a conflict clause Ĝ. The soundness of this learning is stated in Lemma 2 and
Lemma 3.

Definition 7 (String Solved Form) A string equation is in solved form if it is in the
form of X=f(Y1, ..., Yn, a1, ..., am), where X ∈ Vstr, Y1, ..., Yn ∈ Vstr, a1, ..., an ∈
Cstr, X 6∈ {Y1, ..., Yn}, and f is a non-recursive function. ut

For example, X=concat(Y,Z) is in solved form. X=concat(Y, concat(Y1, Y2))
can be rewritten into two formulas X=concat(Y,Z) and Z=concat(Y1, Y2), which
are both in solved form. Similarly, we can define a solved form in integer theory:

Definition 8 (Integer Solved Form) An equation is in solved form if it is in the form of
M=g(N1, .., Nn, p1, ..., pm), whereM∈Vint, V1, .., Vn∈Vint∪Vstr, p1, ..., pm∈Cint∪
Cstr, M 6∈ {N1, ..., Nn}, and g is a function. ut

Now, suppose some formula G contains an equation X=f(· · · ) in solved form, we
are able to eliminate variable X by substituting X with f(· · · ) in G. To obtain Ĝ,
we need to remove all equations in solved form from G. The purpose of deriving Ĝ
is to obtain the core reason for pruning G, which helps us to extract a smaller unsat-
isfiable core for the input formula. For Example 3, G is Y2·“b”·Z = star(“a”,M) ∧
Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z. So we have 3 equations Y1=“a”·Y2,N=M+1,
and X=Y1·“b”·Z which are in solved form. Therefore, we mark Ĝ ≡ Y2 · “b” · Z =
star(“a”,M) as a possible conflict clause. Later, when we can decide the unsatisfiabil-
ity of the input formula, based on the implication graph, we can trace back to extract an
unsat core for the input formula. Specifically, it isX = star(“a”, N)∧X = Y1 ·“b”·Z.

Lemma 2. Suppose the pruning condition check is applied for specific formulas F and
G. Then F can be written into the form G ∨ Gr and the following holds: if Gr is
unsatisfiable, F is unsatisfiable.

Proof Outline. Similarly to the proof of Lemma 1, we can prove that F ≺σ G. Also, by
[Prop-1], we have F =σ Gr. Therefore, if Gr is unsatisfiable, F is unsatisfiable. ut

Lemma 3. Ĝ is satisfiable iff G is satisfiable.

Proof Outline. This lemma holds by construction (of Ĝ). ut



Now we present the detailed implementation of obtaining Ĝ in Z3, given that Z3
manages theory terms via its congruence closure engine. First, we give an overview
on how Z3 builds its equivalence classes. Given an equation, its two sides will be rep-
resented as two nodes in an equivalence class. For Example 3, since G is Y2·“b”·Z =
star(“a”,M)∧Y1=“a”·Y2∧N=M+1∧X=Y1·“b”·Z, we have 4 equivalence classes
as follows:

• X , Y1·“b”·Z
• Y2·“b”·Z , star(“a”,M)
• Y1 , “a”·Y2
• N , M + 1

Note that given a node e representing a term Q, we are able to access all nodes repre-
senting terms that take term Q as their parameters (e.g., for string term D and E, we
can access the nodes representing length(D), concat(D,E)). We call the later parent
nodes of e.

There are three steps to remove an equation V=f(· · · ) in solved form. First, we
mark the node representing variable V . A node e is marked when:

• it represents a single variable V (V can be either a string variable or an integer
variable),
• the size of its equivalence class is greater than 1,
• its parent nodes are not in the same equivalence class as e, and
• not all of remaining nodes in the equivalence class of e contain recursive functions.

Second, we substitute the value of all marked nodes in their parent nodes with the
value of another node in the equivalence classes of the marked nodes. Finally, we need
to traverse all unmarked nodes in the equivalence classes to create a conjunction of
all equations. For Example 3, according to above conditions, nodes representing X , Y1,
andN will be marked in their corresponding equivalence classes. Then, we can traverse
all unmarked nodes to obtain the formula Ĝ ≡ Y2·“b”·Z=star(“a”,M).

6 Evaluation

We implemented our algorithm into S3 [21] which itself was built on top of the Z3
framework [9]. Our solver is called S3P which stands for Progressive S3. To evalu-
ate our solver, we conduct two case studies which involve practical benchmark con-
straints generated from testing JavaScript web applications. All experiments are run on
a 3.2GHz machine with 8GB memory.

In the first case study, we used a large and popular set of benchmark constraints
generated using the Kudzu symbolic execution framework [18]. State-of-the-art string
solvers are also evaluated using this benchmark suite, making it convenient for us to
provide detailed comparisons on the applicability and efficiency of our new solver.

Note that the constraints in Kudzu’s benchmarks have already been preprocessed
and/or over-simplified. In particular, the string lengths have been bounded and recursive
string function such as replace have been transformed to primitive operators so that the



underlying solver of Kudzu [18] can handle. Because strong support for the replace
function is critical for enhancing security analysis of web applications, we conduct a
second case study, of a smaller scale, but with special focus on the replace function.
The main purpose is to show that S3P is more applicable than existing solvers in such
domain applications.

Kudzu Benchmarks: In this case study, we use the set of constraints which can be
downloaded at: http://webblaze.cs.berkeley.edu/2010/kaluza. They were generated us-
ing Kudzu [18], a symbolic execution framework for JavaScript, when testing 18 sub-
ject applications consisting of popular AJAX applications. The generated constraints
are of boolean, integer and string types. Integer constraints also include ones on length
of string variables, while string constraints include string equations, membership pred-
icates. To compare with other solvers, we choose to use the SMT-format version of
Kaluza benchmark as provided in [14].

This case study consists of two parts. The first part is to evaluate our non-progression
detection technique. Table 1 shows the result of solving Kudzu constraints by S3P,
compared with 4 state-of-the-art solvers: Norn (v1.0), CVC4 (v1.4), S3 (v17092015),
Z3-str2 (v1.0.0). While Norn is automata-based string solver, the others, including S3P,
are word-based string solvers, in which string is treated as a basic type.

Table 1. Constraints generated by Kudzu

Norn CVC4 S3 Z3-str2 S3P
Sat 27068 33227 34961 34931 35270

Unsat 11561 11625 11799 11799 12014
Unk 0 0 0 524 0
Error 6187 0 0 0 0

TO (20s) 2468 2432 524 30 0

Time (s) 178960 50346 16547 6309 6972

Table 2. Usefulness of un-
satisfiable cores for Kudzu
framework

# unsat files 12014
S3P Time 1129s
S3P # unsat cores 59
with % skipped 99.5

unsat core Time 11s

It can be seen that automata-based solvers such as Norn are not good at handling con-
straints generated from concolic testing of web applications. This is because such con-
straints are usually of multi-sorted theory, including both string constraints and integer
constraints, such as those coming from the string lengths.

In fact, for the case of Kudzu constraints, all word-based string solvers dominate
Norn. Not counting S3P, Z3-str2 is the solver that produces the best result. Z3-str2 also
terminates on 524 benchmarks where Norn, CVC4 and S3 all time out. Specifically,
Z3-str2 terminates with an Unknown answer if the input formula contains the so-called
“overlapping variables” [22].

Compared with Z3-str2, S3P can in fact decide the satisfiability of these 524 bench-
marks. S3P achieves this by employing the proposed technique for non-progression
detection. Specifically,

• if an input formula is unsatisfiable, S3P is able to decide the unsatisfiability of that
formula. For example, it can decide the unsatisfiability of 215 input formulas in
those 524 benchmarks.



• otherwise, being able to effectively prune away non-progressive paths, S3P has a
chance of finding solutions in other search branches. As such, the remaining of
those 524 benchmarks are decided as satisfiable with the correct models.

In fact, for each of the 35270 benchmarks which S3P declares to be satisfiable, we
conjoin the model generated by S3P with the original input formula and pass it to the
other 4 solvers. As a result, all 4 solvers can now decide, with an answer confirming the
satisfiability, even on those benchmarks they could not decide before. In other words,
all models produced by S3P are cross-checked and all the solvers reach a consensus for
every single case.

In the second part of this case study, we focus on benchmarks which are unsatisfi-
able, in order to demonstrate our conflict clause learning technique. More specifically,
we will extract the unsatisfiable cores from those input constraints, and show the po-
tential usefulness of the cores in a dynamic symbolic execution (DSE) framework (e.g.
Kudzu). To do this, we compare the result of solving 12014 unsatisfiable formulas in
Kudzu benchmarks by two versions of S3P. The first version (S3P) will solve each for-
mula independently. In contrast, when deciding a formula as unsatisfiable, the second
version will cache its unsat core. Subsequently, it will attempt to skip a formula if the
formula is discharged by some cached unsat core. The result is summarized in Table 2.
There are two important observations:

• By extracting and caching the unsatisfiable cores of 59 formulas, we can skip
checking the satisfiability of the remaining formulas (99.5%) (which in fact repre-
sent infeasible paths to the attack against the sink). Overall, we achieve the speedup
of about 102x faster.

• Unsatisfiable cores are also useful for validating/debugging the result. By inspect-
ing a much smaller number of constraints compared to the original ones, we are
able to validate the final result. For example, we are able to confirm that all unsat-
isfiable answers are correct by inspecting them manually.

Jalangi Benchmarks: This second case study is to focus on the replace string func-
tion. As such, we collect constraints generated by testing web applications using the
concolic tester in Jalangi framework [19], and do not make any preprocessing with
those constraints. These applications are annex, tenframe, calculator, go, and
shopping. Note that all of them are not vulnerable to XSS attacks.

Let us first present the set-up to collect this set of constraint benchmarks. For each
web application, we choose a sink point, that is innerHTML. Then we symbolically
execute paths from a source to the sink. These path constraints will be combined with
attack specifications at the sink. The resulting formulas are sent to a constraint solver.

Table 3. Constraints generated by Jalangi

# benchmarks # constraints # replace operation Time of S3P
48 624 96 143.7 s

Table 3 summarizes the statistics of those formulas, along with the running time of S3P.
In 48 benchmarks, there are 624 constraints and 96 constraints are involved in replace
operation. So the percentage of replace operation is about 15%.



More importantly, replace operation appears in all benchmarks. The reason is that
after a source point, a web application usually provides some sanitizing mechanism, for
example, by replacing all “<” with “&lt; ” and “>” with “&gt; ”. As such, the path
constraints usually involve the replace function. For a concrete example, after symbol-
ically executing the program, a DSE framework will combine the path constraints with
the specifications for attacks, to create queries for the constraint solver. A specification
for innerHTML sink can be all the strings that contain “ < script”. Then a simplified
example of a common pattern is:

input1=replace(input, “<”, “&lt; ”)∧ input2=replace(input1, “>”, “&gt; ”) ∧
output=input2 · “</br>” ∧ contains(output, “<script”)

Given that Z3-str2, CVC4, and Norn cannot deal with replace operation, the only
work which is comparable in term of the expressiveness as our solver, is S3. However,
S3 timeouts for all of those formulas because it goes into infinite loops (similarly to
what we have shown in Section 2). In contrast, S3P can decide the unsatisfiability of all
benchmarks. Since S3P is the only solver that is applicable in those constraints (which
are generated from testing web applications), we believe it will make a remarkable
contribution to ensuring the security of web applications.

7 Related Work

There is a vast literature on the problem of string solving. Practical methods for solv-
ing string equations can loosely be divided into bounded and unbounded methods.
Bounded methods (e.g., HAMPI [13], CFGAnalyzer [4], and [11]) often assume fixed
length string variables, then treat the problem as a normal constraint satisfaction prob-
lem (CSP). These methods can be quite efficient in finding satisfying assignments and
often can express a wider range of constraints than the unbounded methods. However,
as also identified in [18], there is still a big gap in order to apply them to constraints
arising from the analysis of web applications.

To reason about feasibility of a symbolic execution path from high-level programs,
of which string constraints are involved, one approach [18, 6] is to proceed by first enu-
merating concrete length values, before encoding strings into bit-vectors. In a similar
manner, [17] addresses multiple types of constraints for Java PathFinder. Though this
approach can handle many operators, it provides limited support for replace, requir-
ing the result and arguments to be concrete. Furthermore, it does not handle regular
expressions. In summary, all of them have similar limitations such as performance [21].

Unbounded methods are often built upon the theory of automata or regular lan-
guages. We will be brief and mention a few notable works. Java String Analyzer (JSA)
[8] applies static analysis to model flow graphs of Java programs in order to capture
dependencies among string variables. A finite automata is then derived to constrain
possible string values. The work [20] used finite state machines (FSMs) for abstracting
strings during symbolic execution of Java programs. They handle a few core methods in
the java.lang.String class, and some other related classes. They partially inte-
grate a numeric constraint solver. For instance, string operations which return integers,
such as indexOf, trigger case-splits over all possible return values. A recent work [5]



provides an automata-based technique for solving string constraints and a method for
counting the number of solutions to such constraints. In addition, string solver Norn [1,
2] is also based on automata techniques. They have limited or no support for replace
operations.

Using automata and/or regular language representations potentially enables the rea-
soning of infinite strings and regular expressions. However, most of existing approaches
have difficulties in handling string operations related to integers such as length, let alone
other high-level operations addressed in this paper. More importantly, to assist web ap-
plication analysis, it is necessary to reason about both string and non-string behavior
together. It is not clear how to adapt such techniques for the purpose, given that they do
not provide native support for constraints of the type integer.

Most of recent work on string solving are based on unbounded methods with string
as a primitive data type. Examples are Z3-str [23], CVC4 [14], S3 [21], Z3-str2 [22].
However, none of them addresses the non-termination issues in string solving as in
this paper. Though in [22], the authors address non-termination in splitting overlap-
ping string variables, they currently can not decide the satisfiability of such formulas.
In contrast, we generalize common non-termination issues that appear in solving string
constraints generated from reasoning about web applications. Along with that is a pro-
gressive algorithm which we believe is applicable to not just S3, but also other solvers
in this family of word-based string solvers.

8 Conclusion

This paper presents a progressive algorithm for solving string constraints for the in-
tended purpose of analyzing practical web applications. Its main feature is its ability
to handle the termination problem when unfolding recursive definitions which define
the constraints. This, together with another feature of conflict clause learning, were
demonstrated to show usefulness in pruning the search space and new levels of re-
sults in Javascript benchmarks arising from web applications. Finally, because our al-
gorithm deals with recursive definitions in a somewhat general manner, we believe it
can be extended to support reasoning about unbounded data structures, for example
heap-allocated data structures.

References

1. P. Abdulla, M. Atig, Y.-F. Chen, L. Holk, A. Rezine, P. Rmmer, and J. Stenman. String
constraints for verification. In CAV, pages 150–166. Springer, 2014.

2. P. Abdulla, M. Atig, Y.-F. Chen, L. Holk, A. Rezine, P. Rmmer, and J. Stenman. Norn: An
smt solver for string constraints. In CAV 2015, pages 462–469. Springer, 2015.

3. T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing symbolic execution with
veritesting. In ICSE, pages 1083–1094. ACM, 2014.

4. R. Axelsson, K. Heljanko, and M. Lange. Analyzing context-free grammars using an incre-
mental sat solver. In ICALP, pages 410–422. Springer-Verlag, 2008.

5. A. Aydin, L. Bang, and T. Bultan. Automata-based model counting for string constraints. In
CAV 2015, pages 255–272, 2015.



6. N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-manipulating
programs. In TACAS, pages 307–321. Springer-Verlag, 2009.

7. J. R. Buchi and S. Senger. Definability in the existential theory of concatenation and unde-
cidable extensions of this theory. Mathematical Logic Quarterly, pages 337–342, 1988.

8. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string expressions.
In SAS, pages 1–18, 2003.

9. L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, 2008.
10. ECMA-404. Javascript object notation. http://www.json.org/.
11. J. He, P. Flener, J. Pearson, and W. Zhang. Solving string constraints: The case for constraint

programming. In CP, pages 381–397, 2013.
12. J. Jaffar, V. Murali, and J. A. Navas. Boosting concolic testing via interpolation. In FSE,

pages 48–58. ACM, 2013.
13. A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. Hampi: a solver for string

constraints. In ISSTA, pages 105–116. ACM, 2009.
14. T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A dpll(t) theory solver for a

theory of strings and regular expressions. In CAV, pages 646–662. Springer, 2014.
15. G. S. Makanin. The problem of solvability of equations in a free semigroup. Mathematics

of the USSR-Sbornik, 32(2):129, 1977.
16. OWASP. Top ten project, May 2013. http://www.owasp.org/.
17. G. Redelinghuys, W. Visser, and J. Geldenhuys. Symbolic execution of programs with

strings. In SAICSIT, pages 139–148. ACM, 2012.
18. P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic execution

framework for javascript. In SP, pages 513–528, 2010.
19. K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A selective record-replay and dynamic

analysis framework for javascript. In FSE, pages 488–498, 2013.
20. D. Shannon, I. Ghosh, S. Rajan, and S. Khurshid. Efficient symbolic execution of strings for

validating web applications. In DEFECTS, pages 22–26, 2009.
21. M.-T. Trinh, D.-H. Chu, and J. Jaffar. S3: A symbolic string solver for vulnerability detection

in web applications. In ACM-CCS, pages 1232–1243. ACM, 2014.
22. Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, J. Dolby, and X. Zhang. Effective search-

space pruning for solvers of string equations, regular expressions and length constraints. In
CAV. Springer, 2015.

23. Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a z3-based string solver for web application
analysis. In ESEC/FSE, pages 114–124, 2013.


