
Progressive Reasoning over Recursively-Defined Strings

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar

National University of Singapore (NUS)

July 20, 2016

0 / 19

Reasoning about String Data Type

Motivated by the security of web applications, mobile applications,
etc.

E.g. web applications usually take string values as input, manipulate
them, and then use them to construct database queries

Username ...

Password ...

SELECT ... where user=‘$user’ and password=‘$pwd’

1 / 19

Therefore,

The most serious and critical vulnerabilities are involved in strings

For example,

SQL injection: Username is ’ OR 1=1--

Cross-site scripting (XSS)

To prevent insecure inputs from users

Security experts define attack patterns

e.g., every string that starts with ’ OR 1=1--

Developers use sanitizer functions to replace all substrings that match
an attack pattern in the user input

e.g., via replace function in JavaScript, PHP

2 / 19

Recursively-Defined Strings

For web applications, strings are unbounded

e.g., string is a primitive type in JavaScript, PHP, Python

unlike C, where a string is an array of characters

replace function can be defined recursively:

Y = replace(X , r ,Z)
def
= (X 6∈ /.?r .?/ ∧ Y = X)∨

(X = X1 · X2 · X3 · X4 ∧ X2 · X3 ∈ /r/ ∧ length(X3) = 1∧
X1 ·X2 6∈ /.?r .?/∧Y = X1 ·Z ·Y1∧Y1 = replace(X4, r ,Z))

general definition, where Z is a variable (e.g. as in PHP)

replacement of all substrings in X that match the pattern r

two cases

non-greedy version

3 / 19

The Challenge

Solving recursively-defined string constraints is undecidable

E.g., string functions such as replace make the satisfiability problem
undecidable (Büchi and Senger [1988]; Bjørner et al. [2009]).

4 / 19

State-of-The-Art Techniques

Folding/Unfolding the recursive definitions

e.g., Z3-str2, CVC4, S3, Pisa, etc.

However, they do not address the non-termination issue

Z3-str2 addresses non-termination in splitting overlapping string
variables

5 / 19

Non-termination

Can happen when

unfolding recursive functions such as replace

splitting overlapping string variables

dealing with Kleene star operator

X ∈ r? is represented as X = star(r ,N), where N is a fresh variable.

A recursive definition for star function:

X = star(r ,N)
def
= (X = “”) ∨ (X = r · star(r ,M) ∧ N = M + 1)

6 / 19

Example of Splitting

X · “a” = “b” · X

1 SPLIT: two disjuncts
X · “a” = “b” · X ∧ X = “” (I)
X · “a” = “b” · X ∧ X = “b” · Y (II)

2 CONTRA: (I) leads to a contradiction “a” = “b”
3 SUBSTITUTE for (II):

“b” · Y · “a” = “b” · “b” · Y ∧ X = “b” · Y (III)
4 SIMPLIFY for (III):

Y · “a” = “b” · Y ∧ X = “b” · Y (IV)
5 SPLIT for (IV):

Y · “a” = “b” · Y ∧ X = “b” · Y ∧ Y = “”
Y · “a” = “b” · Y ∧ X = “b” · Y ∧ Y = “b” · Z

6 CONTRA: ...
7 SUBSTITUTE: ...
8 SIMPLIFY:

Z · “a” = “b” · Z ∧ Y = “b” · Z ∧ X = “b” · Y
7 / 19

Search Tree

A search tree whose root is labeled with the input formula

A reduction rule transforms the formula F in the parent node into
formulas Gi in the children nodes such that F ≡

∨
Gi

Gi is expected to be “simpler” than F

G0, G1, G2 are descendants of F1 and F0

F0

F1

G0 G1 G2

F1 ≡ G0 ∨ G1 ∨ G2

F2

F0 ≡ F1 ∨ F2

8 / 19

Search Strategy

Breadth First search (BFS), Iterative Deepening search (IDS) are not
practical

With depth k ≥ 0: Have to traverse at least 2k nodes.

Depth First search (DFS) is more practical

Disadvantage: if G1 is unsatisfiable and the subtree rooted at G1 is
infinite then DFS does not terminate

F0

F1

G1 G2

F1 ≡ G1 ∨ G2

F2

F0 ≡ F1 ∨ F2

9 / 19

String Solving Example

X · “a” = “b” · X

X · “a” = “b” · X
∧ X = “”

X · “a” = “b” · X ∧ X = “b” · Y

Y · “a” = “b” · Y∧
X = “b” · Y ∧ Y = “”

Y · “a” = “b” · Y∧
X = “b” · Y ∧ Y = “b” · Z

...
...

The reduced formula usually has more variables (e.g. Y , Z), and
more constraints (e.g., X = “b” · Y , Y = “b” · Z)

The length bounds of variables are likely changed (e.g., lower bound
of length of X)

Thus, syntactical checking is not able to detect loops

Instead, we need to detect non-progression in solving process

10 / 19

Non-progression

We propose a measure to know if the reduced formula is progressive
towards a target solution

In our setting, we choose the minimal solution of the input formula

If a formula labeling a node C does not contain the minimal solution
of the input formula, then we will prune the subtree rooted at C

Our reduction does not preserve the equivalence.

Instead it preserves the minimal solution of the input formula

11 / 19

A measure for progression

We define:

the lexical length of a solution w.r.t to some sequence.

If F has a solution and σ is a sequence of all the variables of F , then
the lexical length of its minimal solution w.r.t. σ is denoted as len(σ,F)

If F has no solution then len(σ,F) is >

a total order for formulas: F �σ G
def
= len(σ,F) ≤ len(σ,G)

12 / 19

Progressive Pruning

Let τ be a sequence of all variables of the input formula.

A set of prunable subtrees of F is a set of its descendants Gi such
that there exists a sequence σ of all variables of F satisfying:

τ is a prefix of σ and

F ≺σ Gi (the pruning condition check)

We then prune derivation subtrees rooted at formulas Gi .

13 / 19

Theorems

Soundness: Given an input formula F , if our algorithm

returns SAT: then F is satisfiable;

returns UNSAT: then F is unsatisfiable.

Semi-Completeness: Suppose the given input formula F is
satisfiable, and the pruning condition check is complete. Then our
algorithm will

return SAT and

produce a minimal solution w.r.t. a sequence of all the variables of F .

(A complete pruning condition check is non-trivial to implement)

14 / 19

Our string solver S3P

Built on top of the string solver S3

String constraints include

Equality (e.g. X = a, where X is a variable and a is a constant)

Membership checking (e.g. X ∈ r?, where r is a regular expression)

String functions (e.g. length, replace)

Non-string constraints (e.g. integers)

The pruning condition check

Sound but not complete

Practical (shown in Experiments)

Conflict clause learning

Work in tandem with the pruning of non-progressive formulas

Practical (shown in Experiments)

15 / 19

Experiments

Testing web applications by a dynamic symbolic execution (DSE)
framework
Comparison: There are 524 benchmarks that

S3 does not terminate
Z3-str2 detects overlapping variables and return UNKNOWN

S3P teminates and
return UNSAT for 215 benchmarks
return SAT for the remaining

Norn CVC4 S3 Z3-str2 S3P
Sat 27068 33227 34961 34931 35270

Unsat 11561 11625 11799 11799 12014
Unk 0 0 0 524 0
Error 6187 0 0 0 0

TO (20s) 2468 2432 524 30 0

Time (s) 178960 50346 16547 6309 6972

Table: Constraints generated by Kudzu

16 / 19

Experiments

102x faster

Unsat cores are useful to speed up concolic testing/DSE and
verification

unsat files 12014
S3P Time 1129s
S3P # unsat cores 59
with % skipped 99.5

unsat core Time 11s

Table: Usefulness of unsatisfiable cores for Kudzu framework

17 / 19

Experiments

Testing JavaScript web applications by Jalangi

replace and sanitizers

Z3-str2, CVC4, Norn do not support

S3 does not terminate while S3P does

benchmarks # constraints # replace operation Time of S3P
48 624 96 143.7 s

Table: Constraints generated by Jalangi

18 / 19

Conclusion

Progressive search strategy can detect loops caused by

unfolding recursive functions such as replace

unfolding star function when dealing with Kleene star operator

splitting string variables when dealing with string equation that
involves overlapping variables

Furthermore, we believe

it can work with a general fragment of equality logic

one possible direction is to apply for heap-allocated data structures
such as linked lists

Improve the robustness of S3P

19 / 19

Questions & Answers

19 / 19

Discussion

Progressive Search

Search for one solution

Prune a search subtree if a shorter solution can be found elsewhere

Possibly prune away solutions

Tableaux-based Search

Search for all solutions

Have pruning but never prune any solution

Automatic Induction Proof Search (Chu et al. [2015])

Aim at proving entailment

19 / 19

N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for
string-manipulating programs. In TACAS, pages 307–321.
Springer-Verlag, 2009.

J. R. Büchi and S. Senger. Definability in the existential theory of
concatenation and undecidable extensions of this theory. Mathematical
Logic Quarterly, pages 337–342, 1988.

Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. Automatic induction
proofs of data-structures in imperative programs. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’15, pages 457–466, New York, NY, USA, 2015.
ACM.

M.-T. Trinh, D.-H. Chu, and J. Jaffar. S3: A symbolic string solver for
vulnerability detection in web applications. In ACM-CCS, pages
1232–1243. ACM, 2014.

19 / 19

	Introduction

