Progressive Reasoning over Recursively-Defined Strings

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar

National University of Singapore (NUS)

July 20, 2016

0/19

Reasoning about String Data Type

@ Motivated by the security of web applications, mobile applications,
etc.

o E.g. web applications usually take string values as input, manipulate
them, and then use them to construct database queries

(__Username) (D
(_ Password) (iR :

[SELECT ... Where user:‘$ulser’ and password:‘$pvs}d’]

1/19

@ The most serious and critical vulnerabilities are involved in strings

@ For example,

e SQL injection: Username is|’ OR 1=1--

o Cross-site scripting (XSS)

@ To prevent insecure inputs from users

o Security experts define attack patterns

@ e.g., every string that starts with | > OR 1=1--

o Developers use sanitizer functions to replace all substrings that match
an attack pattern in the user input

e e.g., via replace function in JavaScript, PHP

2/19

Recursively-Defined Strings

@ For web applications, strings are unbounded

e e.g., string is a primitive type in JavaScript, PHP, Python
o unlike C, where a string is an array of characters

@ replace function can be defined recursively:

Y = replace(X,r,Z) &' (X & /*r*/ A Y = X)V
(X =X1-Xo-Xz-XgNXo X3 € /r//\length(X3) = 1A
X1 Xo& | r*/NY = X1-Z-Y1A Y1 = replace(Xy, r, Z))

general definition, where Z is a variable (e.g. as in PHP)

replacement of all substrings in X that match the pattern r

two cases

e non-greedy version

3/19

The Challenge

@ Solving recursively-defined string constraints is undecidable

e E.g., string functions such as replace make the satisfiability problem
undecidable (Biichi and Senger [1988]; Bjgrner et al. [2009]).

4/19

State-of-The-Art Techniques

e Folding/Unfolding the recursive definitions

e e.g., Z3-str2, CVC4, S3, Pisa, etc.

@ However, they do not address the non-termination issue

o Z3-str2 addresses non-termination in splitting overlapping string
variables

5/19

Non-termination

Can happen when
@ unfolding recursive functions such as replace
@ splitting overlapping string variables
@ dealing with Kleene star operator

e X € r* is represented as X = star(r, V), where N is a fresh variable.

o A recursive definition for star function:

X =star(r, N) £ (X = ") v (X = r - star(r, M) AN = M + 1)

6/19

Example of Splitting

X-"a"'="p"-X
© SPLIT: two disjuncts

X "2 ="bXAX =" (1)
X' =B XAX="b Y (In)
@ CONTRA: (1) leads to a contradiction “a" = “b"
© SUBSTITUTE for (ll):
Y-t =" Y AX =D Y (1
O SIMPLIFY for (lll):
Y- "a"="p"-YAX="D"Y (IV)
o SPLIT for (1V):
Yora =Y AX =Y AY =
Yo"t =t Y AX =" YAY =" Z
Q@ CONTRA: ...
@ SUBSTITUTE: ...
O SIMPLIFY:

Z-"a'="p"-ZANY="D"-ZANX="P""-Y

7/19

@ A search tree whose root is labeled with the input formula

@ A reduction rule transforms the formula F in the parent node into
formulas G; in the children nodes such that F =\/ G;

e G;j is expected to be “simpler” than F

o Gy, Gy, Gy are descendants of F; and Fy

8/19

Search Strategy

o Breadth First search (BFS), Iterative Deepening search (IDS) are not
practical

o With depth k > 0: Have to traverse at least 2% nodes.

@ Depth First search (DFS) is more practical

e Disadvantage: if G; is unsatisfiable and the subtree rooted at Gj is
infinite then DFS does not terminate

9/19

String Solving Example

X . “a” — “b” . X w_n wypn wpn
X =Y XA X="D"-Y
A X — un a \
Y X uan — ubn . Y/\ Y . uan — ubn X Y/\
X — ubn . Y A Y —E X — upr Y A Y — ubn . Z

\'

The reduced formula usually has more variables (e.g. Y, Z), and
more constraints (e.g., X = “b" - Y, Y ="b" - Z)

The length bounds of variables are likely changed (e.g., lower bound
of length of X)

Thus, syntactical checking is not able to detect loops

Instead, we need to detect non-progression in solving process

10 /19

Non-progression

@ We propose a measure to know if the reduced formula is progressive
towards a target solution

e In our setting, we choose the minimal solution of the input formula

o If a formula labeling a node C does not contain the minimal solution
of the input formula, then we will prune the subtree rooted at C

@ Our reduction does not preserve the equivalence.

@ Instead it preserves the minimal solution of the input formula

11/19

A measure for progression

o We define:
o the lexical length of a solution w.r.t to some sequence.

o If F has a solution and o is a sequence of all the variables of F, then
the lexical length of its minimal solution w.r.t. ¢ is denoted as len(c, F)

o If F has no solution then len(o, F) is T

o a total order for formulas: F <, G % len(o, F) < len(o, G)

12/19

Progressive Pruning

@ Let 7 be a sequence of all variables of the input formula.

@ A set of prunable subtrees of F is a set of its descendants G; such
that there exists a sequence o of all variables of F satisfying:

e 7 is a prefix of o and

o F <, G; (the pruning condition check)

@ We then prune derivation subtrees rooted at formulas G;.

13/19

Theorems

@ Soundness: Given an input formula F, if our algorithm

o returns SAT: then F is satisfiable;

o returns UNSAT: then F is unsatisfiable.

o Semi-Completeness: Suppose the given input formula F is
satisfiable, and the pruning condition check is complete. Then our
algorithm will

e return SAT and

e produce a minimal solution w.r.t. a sequence of all the variables of F.

(A complete pruning condition check is non-trivial to implement)

14 /19

Our string solver S3P

@ Built on top of the string solver S3

e String constraints include
e Equality (e.g. X = a, where X is a variable and a is a constant)
o Membership checking (e.g. X € r*, where r is a regular expression)

e String functions (e.g. length, replace)
o Non-string constraints (e.g. integers)

@ The pruning condition check

e Sound but not complete
o Practical (shown in Experiments)

@ Conflict clause learning
e Work in tandem with the pruning of non-progressive formulas

o Practical (shown in Experiments)

15/ 19

@ Testing web applications by a dynamic symbolic execution (DSE)
framework
@ Comparison: There are 524 benchmarks that
e S3 does not terminate
o Z3-str2 detects overlapping variables and return UNKNOWN
e S3P teminates and
o return UNSAT for 215 benchmarks
@ return SAT for the remaining

Norn Cv(C4 S3 Z3-str2 | S3P
Sat 27068 | 33227 | 34961 | 34931 | 35270
Unsat 11561 | 11625 | 11799 | 11799 | 12014

Unk 0 0 0 524 0
Error 6187 0 0 0 0
TO (20s) | 2468 | 2432 | 524 30 0

[Time (s) | 178960 | 50346 | 16547 | 6309 | 6972 |

Table: Constraints generated by Kudzu

16 / 19

@ 102x faster

@ Unsat cores are useful to speed up concolic testing/DSE and
verification

unsat files 12014

S3P Time 1129s
S3P # unsat cores 59
with % skipped 99.5
unsat core Time 11s

Table: Usefulness of unsatisfiable cores for Kudzu framework

17 /19

Testing JavaScript web applications by Jalangi
replace and sanitizers

Z3-str2, CVC4, Norn do not support

S3 does not terminate while S3P does

benchmarks | # constraints | # replace operation | Time of S3P
48 624 96 143.7 s

Table: Constraints generated by Jalangi

18 /19

Conclusion

@ Progressive search strategy can detect loops caused by

e unfolding recursive functions such as replace
e unfolding star function when dealing with Kleene star operator

e splitting string variables when dealing with string equation that
involves overlapping variables

@ Furthermore, we believe

e it can work with a general fragment of equality logic

e one possible direction is to apply for heap-allocated data structures
such as linked lists

@ Improve the robustness of S3P

19 /19

Questions & Answers

19 /19

Discussion

@ Progressive Search
e Search for one solution
o Prune a search subtree if a shorter solution can be found elsewhere

o Possibly prune away solutions

@ Tableaux-based Search

e Search for all solutions

e Have pruning but never prune any solution

@ Automatic Induction Proof Search (Chu et al. [2015])

e Aim at proving entailment

19 /19

N. Bjgrner, N. Tillmann, and A. Voronkov. Path feasibility analysis for
string-manipulating programs. In TACAS, pages 307-321.
Springer-Verlag, 20009.

J. R. Biichi and S. Senger. Definability in the existential theory of
concatenation and undecidable extensions of this theory. Mathematical
Logic Quarterly, pages 337-342, 1988.

Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. Automatic induction
proofs of data-structures in imperative programs. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI '15, pages 457-466, New York, NY, USA, 2015.
ACM.

M.-T. Trinh, D.-H. Chu, and J. Jaffar. S3: A symbolic string solver for

vulnerability detection in web applications. In ACM-CCS, pages
1232-1243. ACM, 2014.

19 /19

	Introduction

