
Minh-Thai Trinh, Duc-Hiep Chu, Joxan Jaffar
National University of Singapore (NUS)

S3 : A Symbolic String Solver for
Vulnerability Detection in Web Applications

Web applications

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 2

�  Usually:
�  take string values as inputs,
�  manipulate string values, and then
�  use string values to construct database queries.

�  "SELECT ... where user='$user' and password='$pwd'"

……. Username

……. Password

Vulnerabilities in web applications

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 3

�  From OWASP, the most serious web security

vulnerabilities:

� #1: Injection flaws such as SQL injection

� #3: Cross Site Scripting (XSS) flaws

Due to inadequate sanitization and inappropriate use
of input strings provided by users

Dynamic Symbolic Execution (DSE)

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 4

�  Current trend to detect vulnerabilities in web
applications (Saxena[SP’10], Brumley[SP’10,ICSE’14])

�  How does it work?

�  Symbolic execution for high coverage of program
execution space

� But concretize when necessary to avoid false positive
�  Event space

�  Loops

�  Hard-to-solve constraints such as non-linear constraints

Email validation

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 5

function validateEmail(email) {
 ...
 // break email into 3 parts
 // local part
 // @ character
 // domain part
 if (domain.equals("nus.edu.sg")){

 var reg = new RegExp("^[a-zA-Z][0-9]*$");
 var test1 = reg.test(local);
 var test2 = local.length == 8;
 return test1 && test2;
 }
 else if (domain.equals("comp.nus.edu.sg"))
 return local.length >= 4;
 else
 return false;
}

……. Email

Client-side
JavaScript

code

Server-side PHP code

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 6

$eml = $_POST['email'];
$pwd = $_POST['password'];
$stm="SELECT ... where email='$eml' and password='$pwd'";
$result = mysql_query($stm);

……. Email

……. Password

SQL injection?

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 7

�  To detect SQL injection, we may want to test whether

$eml contains the string:

�  The attack specification (e.g. above) is given by

security experts

' OR 1=1--

Dynamic Symbolic Execution (DSE)

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 8

�  First express all the input email addresses that can be

validated by using the symbolic constraints

�  So that we know the form of $eml at the server side

�  Combine with the attack specification (on $eml) to decide

if the JavaScript code is vulnerable to SQL injection

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 9

email = local . “@” . domain /\
domain = “nus.edu.sg” /\
reg = /^[a-zA-Z][0-9]*$/ /\
local in reg /\ len(local) = 8

function validateEmail(email) {
 ...
 // break email into 3 parts
 // local part
 // @ character
 // domain part
 if (domain.equals("nus.edu.sg")){

 var reg = new RegExp("^[a-zA-Z][0-9]*$");
 var test1 = reg.test(local);
 var test2 = local.length == 8;
 return test1 && test2;
 }
 else if (domain.equals("comp.nus.edu.sg"))
 return local.length >= 4;
 else
 return false;
}

email = local . “@” . domain /\
domain = “comp.nus.edu.sg” /\
len(local) >= 4

PC1

PC2

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 10

Email address that
leads to SQL injection

if PC1 or PC2 is satisfiable

if

Email address that
passes the validation

Vulnerability Detection ~> Constraint Solving

It passes the validation and
leads to $eml which
contains the string
' OR 1=1--

Checking satisfiability of formulae

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 11

�  From vulnerability detection to checking the
satisfiability of the following formulae:

email = local . “@” . domain /\
domain = “nus.edu.sg” /\
reg = /^[a-zA-Z][0-9]*$/ /\
local in reg /\ len(local) = 8 /\
email = $eml /\
$eml contains “’ OR 1=1--”

email = local . “@” . domain /\
domain = “comp.nus.edu.sg” /\
len(local) >= 4 /\ email=$eml /\
email contains “’ OR 1=1--”

UNSAT

email = ‘ OR 1=1@comp.nus.edu.sg

PC1’

PC2’

Traditional Random Testing

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 12

�  Test with concrete inputs

� To exploit the SQL injection vulnerability, the input email

addresses need to be validated first

�  In order to reach $eml at the server side

�  E.g.

� Unlikely to test with the interesting case:

' OR 1=1--@comp.nus.edu.sg

' OR 1=1--
Does not pass the
validation test

S3: A Robust and Efficient String Solver

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 13

S3 Language

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 14

�  Independent of input languages, e.g. PHP, JavaScript, etc.
�  Non-string constraints

�  E.g., constraints of int-sort, bool-sort, …
�  Length constraints

�  String constraints over multiple string variables:
�  String equations
�  Membership predicates
�  String operations

�  ReplaceAll

�  Regular expressions:
�  Constructed from Constant Strings using Union, Concatenation,

Kleene star operations
�  S3 also supports character classes, escaped sequences,
 repetition operators, sub-match extraction using capturing

parentheses, etc.

Comparison with Kaluza

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 15

� Kaluza is the representative for the state-of-
the-art
�  Supports the most expressive constraint language so far
�  Is the underlying solver for a DSE framework (Kudzu[SP’10])

to detect vulnerabilities in JavaScript programs
�  Can also be used in other vulnerability analyses

(NoTamper[CCS'10], WAPTEC[CCS'11])

� S3 is even more expressive:
�  Unbounded strings
�  High-level string operations such as ReplaceAll

�  Used frequently in sanitization
� S3 has better performance, better robustness

JavaScript Example

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 16

function validateFields(p1,p2) {
 var re1 = /^(ab)*$/;
 var re2 = /^(bc)*$/;
 var t1 = re1.test(p1);
 var t2 = re2.test(p2);
 var t3 = p2.length > 0;
 return (t1 && t2 && t3)
}

 “ababababababcc” p1 . p2

JavaScript Code Generated Constraints

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 17

function validateFields(p1,p2)
{
 var re1 = /^(ab)*$/;
 var re2 = /^(bc)*$/;
 var t1 = re1.test(p1);
 var t2 = re2.test(p2);
 var t3 = p2.length > 0;
 return (t1 && t2 && t3)
}

Constraint Solving

 “ababababababcc” p1 . p2 Check for satisfiability. If UNSAT
then the program is SAFE

Star representation

Generated Constraints Our Internal Representation

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 18

Regular Expression to String Equation

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 19

�  a
�  n1 is used to represent the number of repeating “ab”
�  n1 is a variable, not a constant
�  n1 is a fresh variable and generated automatically
�  Specifically, star(“ab”, n1) can be interpreted as:

�  (p1 = “” /\ n1=0) V p1 = “ab” . star(“ab”, n1-1)
�  (p1 = “” /\ n1=0) V p1 = star(“ab”, n1-1) . “ab”
�  (p1 = “” /\ n1=0) V p1 = “ab” . star(“ab”, n1-2) . “ab”

�  Guided by the current context

Incremental Solving of S3
Kaluza (Generate and Test) S3

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 20

� Generate all possible length
assignments for p1 and p2:

�  {pair | pair=(len(p1),len(p2))}
 = {(0, 12), (2, 10), (4, 8),
 (6, 6), (8, 4), (10, 2)}

�  star(“ab”,n1) . star(“bc”,n2) =
“ababababababcc”

�  star(“ab”,n1) . star(“bc”,n2-1) . “bc”
= “ababababababcc”

UNSAT (since “bc” ≠ “cc”) 6 times of testing

Note that len(p2) > 0

In summary

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 21

� Kaluza: generate and test approach

�  Generates all possible length assignments

�  For each length assignment, test if any string

assignment satisfies the given formula.

�  Suffers from the combinatorial explosion

� S3: incremental solving approach

Implementation

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 22

�  Is built on top of Z3-str (FSE’13) to exploit Z3’s

infrastructure
�  Lemma generation

�  Non-string constraints

�  S3 is more expressive than Z3-str:

�  Regular expressions (e.g. /a*b*/)

�  Membership predicates (e.g. x is in /a*b*/)

�  String operations that work on regular expression (e.g. replaceAll,

match, split, etc.)

Experimental Evaluation

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 23

� Kaluza benchmarks: 50000+ test cases
� Generated from the vulnerability analysis

of Kudzu[SP’10]

� Classified by Kaluza into 2 categories
� SAT Category: 21819 benchmarks

� UNSAT Category: 33230 benchmarks

Interpreting the solver’s conclusions

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 24

�  SAT:
� The formula is satisfiable
� Can generate the test input to exploit the vulnerabilities

�  UNSAT:
� The formula is unsatisfiable
� Cannot generate any test input to exploit the

vulnerabilities
�  MAYBE:

�  Inconclusive
� Need further investigation

Experimental Evaluation

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 25

S3 vs. Kaluza on SAT Category (21819 benchmarks)

Kaluza

S3

Kaluza S3
SAT 21808 21813
UNSAT 0 6
ERROR 11 0

Experimental Evaluation

0% 20% 40% 60% 80% 100%

Kaluza

S3

Kaluza S3
UNSAT 7124 14877
SAT 2894 18210
ERROR 22653
TO(1min) 559
MAYBE 143

20/11/14 26 S3: A Symbolic String Solver (CCS'14 talk)

S3 vs. Kaluza on UNSAT Category (33230 benchmarks)

Experimental Evaluation

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 27

Conclusion

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 28

� A string solver
� Support a rich set of constraints,

� Generated from vulnerability analysis of web
applications

� Robust and efficient
� A modular contribution to any hypothetical DSE

end-to-end system
�  The tool is available soon

Future Work

20/11/14 S3: A Symbolic String Solver (CCS'14 talk) 29

�  Strengthening the tool
� Conflict clause learning in the string theory

�  Integrating into an advanced DSE framework

