53 : A Symbolic String Solver for

Vulnerability Detection in VWeb Applications

Minh-Thai Trinh, Duc-Hiep Chu, Joxan Jaffar
National University of Singapore (NUS)

Web applications
e Usually:

e take string values as inputs,

e manipulate string values, and then

e use string values to construct database queries.

4)
Username [.......
| Password | NS |
(S J
! }
e "SELECT ... where user='$user' and password='S$Spwd'"
20/11/14

@ S3: A Symbolic String Solver (CCS'14 talk)

/

Vulnerabilities in web applications

* From OWASP, the most serious web security

vulnerabilities:

o #1:Injection flaws such as SQL injection

e #3: Cross Site Scripting (XSS) flaws

-

Due to inadequate sanitization and inappropriate use
of input strings provided by users

N

~

J

S$3:A Symbolic String Solver (CCS'I4 talk)

20/11/14

/

Dynamic Symbolic Execution (DSE)

e Current trend to detect vulnerabilities in web
applications (Saxena[SP’10], Brumley[SP’|0,ICSE’ [4])

* How does it work?
e Symbolic execution for high coverage of program
execution space

e But concretize when necessary to avoid false positive

Event space
Loops

Hard-to-solve constraints such as non-linear constraints

S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

/

Email validation

Client-side
JavaScript
code

function validateEmail (email) {

// break email into 3 parts
// local part

// @ character

// domain part

if (domain.equals("nus.edu.sg")) {
var reg = new RegExp ("*[a-zA-Z][0-9]*S$")
var testl = reg.test(local);
var test2 = local.length == §;

return testl && test?;

}

else 1f (domain.equals ("comp.nus.edu.sg"))
return local.length >= 4;

else
return false;

@ S3: A Symbolic String Solver (CCS'14 talk)

e

20/11/14

/

Server-side PHP code

- D
| Email
_Password | I |

-)

seml = $ POST['email'];

$pwd = $ POST['password'];

$stm="SELECT ... where email='$eml' and password='$pwd'";
sresult = mysgl query (Sstm);

@ S3:A Symbolic String Solver (CCS'l 4 talk) 20/11/14 /

SQL injection?

e To detect SQL injection, we may want to test whether

$eml contains the string:

e

e The attack specification (e.g. above) is given by

security experts

S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

/

Dynamic Symbolic Execution (DSE)

» First express all the input email addresses that can be
validated by using the symbolic constraints

e So that we know the form of $eml at the server side

e Combine with the attack specification (on $eml) to decide

if the JavaScript code is vulnerable to SQL injection

@ S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14 /

e

function validateEmail (email) {

// break email into 3 parts

// local part

// @ character

// domain part

if (domain.equals("nus.edu.sg")) {

var testl = reg.test(local);
var test2 = local.length == §;
return testl && test2;

}

return local.length >= 4;
else

return false;

var reg = new RegExp ("*[a-zA-Z][0-9]*S$'")

else 1f (domain.equals ("comp.nus.edu.sg"))

@ S$3:A Symbolic String Solver (CCS'I4 talk)

PC1

email = local .“@” . domain /\
domain =“nus.edu.sg” /\

reg = [A[a-zA-2] [0-9]*$/ N\
local in reg /\ len(local) = 8)

PC2

email = local .“@” . domain /\
domain = “comp.nus.edu.sg” /\

len(local) >= 4

20/11/14

/

4 ™

Vulnerability Detection ~> Constraint Solving

[PE:;:ISI :ﬁ: zzifd;:?;n J if [PCIl or PC2 is satisfiable J

a N\

[Email address that J . It passes the validation and
|

leads to SQL injection leads to $eml which
contains the string

' OR 1=1--

@ S$3: A Symbolic String Solver (CCS'l4 talk) 20/11/14 /

Checking satisfiability of formulae

* From vulnerability detection to checking the
satisfiability of the following formulae:

PCl’
/“email = local “@” . domain /\ I

domain = “nus.edu.sg” /\
reg = /~[a-zA-2] [0-91*$/ \ | pm——) UNSAT
local in reg /\ len(local) = 8 /\

email = $eml /\
\ $eml contains“” OR [=]--" /

PC2’

email = local .“@” . domain /\

len(local) >= 4 /\ email=%$eml /\
email contains *““ OR [=]--"

J
@ S3: A Symbolic String Solver (CCS'14 talk)

domain = “comp.nus.edu.sg” /\ - email =‘ OR |=1@comp.nus.edu.sg

20/11/14

/

Traditional Random Testing

e Test with concrete inputs

e To exploit the SQL injection vulnerability, the input email
addresses need to be validated first

In order to reach $eml at the server side

¢ E.g. { ' OR 1l=1-- J — s [Does not pass the}

validation test

e Unlikely to test with the interesting case:

{ ' OR 1=1——@comp.nus.edu.sg]

S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

/

53:A Robust and Efficient String Solver

@ S3:A Symbolic String Solver (CCS'l4 talk) 20/11/14 /

53 Language

e Independent of input languages, e.g. PHP, JavaScript, etc.

e Non-string constraints
e E.g., constraints of int-sort, bool-sort, ...
e Length constraints
e String constraints over multiple string variables:
e String equations
e Membership predicates
e String operations
ReplaceAll
e Regular expressions:

e Constructed from Constant Strings using Union, Concatenation,
Kleene star operations

e S3 also supports character classes, escaped sequences,

repetition operators, sub-match extraction using capturing
parentheses, etc.

S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

/

Comparison with Kaluza

e Kaluza is the representative for the state-of-
the-art

e Supports the most expressive constraint language so far

e |s the underlying solver for a DSE framework (Kudzu[SP’|0])
to detect vulnerabilities in JavaScript programs

e Can also be used in other vulnerability analyses
(NoTamper[CCS'I 0], WAPTEC[CCS'I 1])

e S3 is even more expressive:
e Unbounded strings
* High-level string operations such as ReplaceAll
e Used frequently in sanitization

* S3 has better performance, better robustness

S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

var t3

}

JavaScript Example

function validateFields (pl,p2) {
var rel = /" (ab)*$/;
var re2 = /" (bc)*S$/;
var tl = rel.test (pl);
var t2 = reZ.test(p2);
p2.length > 0;
return (tl && t2 && t3)

Ty

‘“‘ababababababcc”

@ S3: A Symbolic String Solver (CCS'14 talk)

20/11/14

/

Constraint Solving

JavaScript Code Generated Constraints

function validateFields (pl, p2)

{ p1 = (“ab”)* A
var rel = /" (ab)*S$/; p2 € (“bC”)* A

var re2 = /*(bc)*S/;
var tl = rel.test(pl):; length (p2) > 0 A

var t2 = reZ2.test (p2); y ;
var t3 = p2.length > 0; pl - p2 = “ababababababcc

return (tl && t2 && t3)
} !

[pl.p2 }#[“ababababababcc” } { Check for satisfiability. If UNSAT }

then the program is SAFE

@ S3:A Symbolic String Solver (CCS'l 4 talk) 20/11/14 /

Star representation

Generated Constraints Our Internal Representation

pl € (“ab”)* A =) pl = star(“ab”,nl) A

p2 € (“bc”)* A == p2 = star(“bc”,n2) A

length (p2) > 0 A length (p2) > 0 A

pl - p2 = “ababababababcc” pl - p2 = “ababababababcc”
@ S3:A Symbolic String Solver (CCS'l 4 talk) 20/11/14 /

Regular Expression to String Equation
e pl € (“ab’)* =+ pl = star (“ab”’,nl)

* N1 is used to represent the number of repeating “ab”

e N1 is a variable, not a constant

* N1 is a fresh variable and generated automatically

* Specifically, star(“ab”, n1) can be interpreted as:

e (p1=“"\n1=0) V p1=*"ab”.star(“ab”,n1-1)

e (p1=“"\n1=0) V p1 =star(“ab”’,n1-1) .“ab”

e (p1=“"\n1=0) V p1=*"ab”.star(“ab”,n1-2) .“ab”
e Guided by the current context

S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

Incremental Solving of S3

Kaluza (Generate and Test)

S3

* Generate all possible length | ¢ star(“ab”,nl) .star("bc”,n2) =
assighments for pl and p2: ababababababcc

e {pair | pair=(len(pl),len(p2))}
= {(0, 12), (2, 10), (4, 8),
(6,6),(8,4),(10,2)}
v

l

e star(“ab”,nl) .star(“bc”,n2-1) .“bc”
= “ababababababcc”

l

[6 times of testing]

[UNSAT (since “bc” = “cc”)]

Note that len(p2) > 0

@ S$3:A Symbolic String Solver (CCS'I4 talk)

20/11/14

/

In summary

e Kaluza: generate and test approach
e Generates all possible length assignments

e For each length assighment, test if any string

assignment satisfies the given formula.

o Suffers from the combinatorial explosion

* S3:incremental solving approach

S$3:A Symbolic String Solver (CCS'I4 talk)

20/11/14

/

Implementation

e |s built on top of Z3-str (FSE’| 3) to exploit Z3’s

infrastructure

e Lemma generation

e Non-string constraints
e S3 is more expressive than Z3-str:
e Regular expressions (e.g. /a*b*/)
* Membership predicates (e.g. x is in /a*b*/)

e String operations that work on regular expression (e.g. replaceAll,

match, split, etc.)

S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

/

Experimental Evaluation

e Kaluza benchmarks: 50000+ test cases
e Generated from the vulnerability analysis
of Kudzu[SP’10]
* Classified by Kaluza into 2 categories
e SAT Category: 21819 benchmarks
e UNSAT Category: 33230 benchmarks

@ S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14 /

Interpreting the solver’s conclusions
o SAT:

e The formula is satisfiable
e Can generate the test input to exploit the vulnerabilities

o UNSAT:

e The formula is unsatisfiable

e Cannot generate any test input to exploit the
vulnerabilities

 MAYBE:

e [nconclusive
e Need further investigation

S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

/

e

Experimental Evaluation
S3
Kaluza
Kaluza S3
B SAT 21808 21813
B UNSAT 0 6
B ERROR | | 0
S3 vs. Kaluza on SAT Category (21819 benchmarks)
S3:A Symbolic String Solver (CCS'l 4 talk) 20/11/14

/

e

Experimental Evaluation

S3
Kaluza
0% 20% 40% 60% 80% 100%
Kaluza S3

B UNSAT 7124 14877
BSAT (2894 18210
® ERROR 22653
OTO(Imin) 559
~'MAYBE 143

S3 vs. Kaluza on UNSAT Category (33230 benchmarks)

@ S$3:A Symbolic String Solver (CCS'I4 talk)

20/11/14

/

Experimental Evaluation

] Time(s)
#Fi1les ¢ 33 1 K/S3
SAT/Small 19984 | 5190 | 267 | 19.4x
SAT/Big 1835 | 3165 | 166 | 19.0x
UNSAT/Small | 11761 | 4532 | 173 | 26.2x

Table 8: Timing Comparison: S3 vs. Kaluza

@ S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

/

Conclusion

e A string solver

e Support a rich set of constraints,

Generated from vulnerability analysis of web
applications

e Robust and efficient

e A modular contribution to any hypothetical DSE
end-to-end system

e The tool is available soon

S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14

/

Future Work

 Strengthening the tool

e Conflict clause learning in the string theory

* Integrating into an advanced DSE framework

@ S3: A Symbolic String Solver (CCS'l4 talk) 20/11/14 /

