
FixBag? : A Fixpoint Calculator for
Quantified Bag Constraints

Tuan-Hung Pham1, Minh-Thai Trinh2, Anh-Hoang Truong2, Wei-Ngan Chin3

1 University of Minnesota, Twin Cities, hung@cs.umn.edu
2 Vietnam National University, Hanoi, {thaitm 52, hoangta}@vnu.edu.vn

3 National University of Singapore, chinwn@comp.nus.edu.sg

Abstract. Abstract interpretation techniques have played a major role
in advancing the state-of-the-art in program analysis. Traditionally, stand-
alone tools for these techniques have been developed for the numerical
domain which may be sufficient for lower levels of program correctness.
To help us analyze a wider range of programs, we have developed a tool
to compute symbolic fixpoints for quantified bag domain. This domain is
useful for programs that deal with collections of values. Our tool is able
to derive both loop invariants and method pre/post conditions via fix-
point analysis of recursive bag constraints. To support better precision,
we have allowed disjunctive formula to be inferred, where appropriate. As
a stand-alone tool, we have tested it on a range of small but challenging
examples with acceptable precision and performance.

1 Introduction

Abstract interpretation [2] is a technique to infer program’s properties. It re-
quires the least fixed point of a monotone function over an abstract domain of
the program’s semantics to be computed. Let 〈L,≺〉 be a complete lattice and
⊥ be its least element. A function f : L → L is monotone if f(u) ≺ f(v) when
u ≺ v with all u, v in L. One classical method to find the fixed point is Kleene
iteration, which computes the ascending chain f0 = ⊥, fi+1 = f(fi) with i > 0
until we find i∗ satisfying fi∗+1 = fi∗ . Widening operator [3] is used to guarantee
that the ascending chain is finite.

Traditionally, stand-alone abstract interpretation (AI) tools have been devel-
oped for the numerical domains (such as octagon [8] and polyhedral [4]). Little
attention has been paid to building such tools for richer pure domains, such as
bags, maps and sequences. Stand-alone AI tools focus primarily on the logics of
the abstract domains and use sound mechanisms for approximating recursion via
fixed point computation. They have been widely adopted by program analysis
systems that are customized to analyze properties from programs (e.g. [1, 9]).

Some recent works [10, 11] have proposed methods to automatically infer dis-
junctive numerical invariants for added precision. However, numerical invariants
are often insufficient for higher levels of program correctness. For example, many

? The tool is available at http://loris-7.ddns.comp.nus.edu.sg/˜project/fixbag/

programs are constructed to compute a collection of values whose correctness
cannot be captured using only numerical properties. Instead, we require a quanti-
fied bag domain to provide more precise program analyzers for such programs. To
the best of our knowledge, there are no current published tool that can discover
quantified bag invariants. We present FixBag, a stand-alone fixpoint calculator
for quantified bag constraints. The tool has the following characteristics:

– FixBag can infer disjunctive fixed points of formulae with bag constraints.
The maximum number of disjuncts is provided by end-users. Supported bag’s
operators are union (∪), intersection (∩), and subset (S1 ⊆ S2), where S1

and S2 denote bags.
– FixBag can find fixed points with quantified constraints. Specifically, the

system supports universal quantifier of the form ∀x ∈ S : P (x) and existen-
tial quantifier of the form ∃x ∈ S : P (x) where x, S, and P (x) are a variable,
a bag, and a predicate concerning x, respectively.

– FixBag partially supports arithmetic constraints on size properties over
bags. Currently, FixBag allows the following types of properties to be in-
ferred : |S1| = m× |S2| and |S| ≤ m.

Section 2 gives an overview via examples. Section 3 introduces the algorithm
to infer fixed points, as used in our tool. Section 4 summarizes our experimental
results. Section 5 concludes with a short discussion on related works.

2 Motivating Examples

Our tool is able to compute disjunctive fixpoints for constraint abstractions over
the bag domain. To illustrate its capability, we shall analyze two list functions
that are commonly used in functional languages, by initially showing their re-
spective constraint abstractions prior to fixpoint analysis. We stress that our
tool is language-independent, as its inputs are logical formulae (with bag and
size constraints) that may be applied to similar abstractions for programs from
other programming languages too.

Our first example is a well-known filter function to select elements from a
list that satisfy a predicate, p, as given below in Caml syntax.

filter p xs = match xs with

| [] → []
| x : xs → if (p x) then x : (filter p xs) else (filter p xs)

The corresponding constraint abstraction, named filterB , for this function
has three parameters: p to denote the predicate p of filter, S to capture the
elements of input list xs, and R to capture the elements of the method’s output.

filterB(p, S,R) ≡ S={} ∧R={} ∨ ∃x, S1, R1 ·S={x}∪S1∧
(p(x) ∧R={x}∪R1 ∧ filterB(p, S1, R1) ∨
¬p(x) ∧R=R1 ∧ filterB(p, S1, R1))

When this constraint abstraction is passed to our tool, we could infer the
following fairly precise closed-form formula using universally quantified bags.

filterB(p, S,R) ≡ (∀x ∈ R : p(x)) ∧ (∀x ∈ S −R :¬p(x)) ∧ R ⊆ S.

Our next example is a membership function to determine if an element exists
within an input list or not. Its Caml code is given below:

mem v xs = match xs with | [] → false

| x : xs → if x = v then true else (mem v xs)

The corresponding constraint abstraction has three parameters, as shown:
memB(v, S, r) ≡ S={}∧¬r ∨ ∃x, S1 ·S={x}∪S1 ∧ (x=v∧r ∨ x 6=v∧memB(v, S1, r))

A precise closed-form formula for this function requires both disjunction and
quantified bag formula, as shown below, which our tool can derive.

memB(v, S, r) ≡ (∀x ∈ S :x6=v)∧¬r ∨ (∃x ∈ S :x=v)∧ r

These two examples show that a good treatment of quantified formula and
disjunction is needed to support more precise analysis.

3 Algorithm

This section presents the algorithm behind FixBag. It starts by defining some
operators used in the bag domain and then comes up with a general algorithm
to find quantified, disjunctive fixpoints. When we mention that φ is a formula, it
means that the formula is normalized. The definition of the normalizing process
is given below.

Definition 1 (Normalizing). A formula φ can be normalized in a twofold
process: First, φ is equivalently converted into φDNF in Disjunctive Normal Form
(DNF). Second, we remove all redundant parts that can be safely eliminated
without changing the logical value of φDNF . They may be duplicate conjuncts,
duplicate disjuncts, true value in a conjunctive formula with more than one
conjunct, or false value in a disjunctive formula with more than one disjunct.

One of the necessary operators used in fixpoint analysis is hulling which is
well-developed for numerical domains. However, to the best of our knowledge,
there is no work attempting to calculate hulling operations on bag/set domain
to date. To realize this, we propose to use a rule-based approach that uses prop-
agation and simplification rules to attain hulling of formulae for the bag domain.
Similar to CHR [5], our propagation rules Rp add new redundant constraints
to a formula while simplification rules Rs aim to reduce the size of a formula
by removing redundant constraints. Although these rules themselves preserve
the logical equivalences of the original formula, they help create intermediate
results that can play important roles in other operations. Let φ1 eφ2 be

∧k
i=1 di

where d1, ..., dk are common conjuncts of two conjunctive formulae φ1 and φ2.
Definition 2 shows our approach to find the hulling result of two conjunctive
formulae.

Definition 2 (Hulling). Given two conjunctive formulae φ1 and φ2, we divide
each of them into two parts: the first one (Γ) contains all conjuncts of the form
m1 ≤ |S| ≤ m2 and the other (∆) has the remaining conjuncts. The two original
formulae are represented as φ1 = Γ1∧∆1 and φ2 = Γ2∧∆2. The hulling operation
is defined as φ1 � φ2 = Γ1 � Γ2 ∧∆1 �∆2 where

– Γ1 � Γ2 =
(
∧
mi1 ≤ |Si| ≤ mi2)︸ ︷︷ ︸

(1)

∧ (
∧
mj1 ≤ |Sj | ≤ mj2)︸ ︷︷ ︸

(2)

∧ (
∧
min(m

i′1,mj′1) ≤ |S
i′j′ | ≤ max(mi′2,mj′2))︸ ︷︷ ︸

(3)

where (1) contains all (mi1 ≤ |Si| ≤ mi2) ∈ Γ1 that Si is not in in Γ2, (2)
consists of all (mj1 ≤ |Sj | ≤ mj2) ∈ Γ2 that Sj is not in Γ1, and (3) has all
Si′j′ that has (mi′1 ≤ |Si′j′ | ≤ mi′2) ∈ Γ1 and (mj′1 ≤ |Si′j′ | ≤ mj′2) ∈ Γ2.

– ∆1�∆2 = simplify
Rs

(∆1�̂∆2) where ∆1�̂∆2 = propagate
Rp

∆1epropagate
Rp

∆2.

We also define a version of the hulling operation without simplification as
φ1�̂φ2 = Γ1 � Γ2 ∧ ∆1�̂∆2. It is needed when we want to check whether a
particular conjunct contributes to the hulling result or not. This notion is used
to measure the closeness of two conjunctive formulae in Definition 3. Given two
conjunctive formula φ1 and φ2, φ1 � φ2 quantifies their closeness as an integer
in the range of 1..99. The larger the number is, the closer they are to each
other. We denote dφe (bφc) the number of conjuncts (disjuncts) in a conjunctive
(disjunctive) formula φ.

Definition 3 (Affinity Measure). Given two conjunctive formulae φ1 and φ2,

the affinity measure � is defined as follows: φ1�φ2 = d(φ1∧φ2)e(φ1�̂φ2)e
dφ1∧φ2e ×98 + 1

While our hulling only works with conjuncts, selective hulling [10] can deal
with disjunctive formulae. Our tool can increase the precision of the output
fixpoints by allowing up to µ disjuncts to be present during the analysis process.
The main idea is to repeatedly call hulling with a closest pair of disjuncts taken
from both the two formulae until there are at most µ disjuncts remaining.

Definition 4 (Selective Hulling). Given a disjunctive formula φ =
∨k
i=1 di

and a maximum number of disjuncts µ, the selective hulling operation ⊕µ is
defined as ⊕µφ = normalize(⊕̂µφ) where ⊕̂µφ is recursively defined as follows:

⊕̂µφ =

φ if k ≤ µ
⊕̂µ
(
(di′ � di′′) ∨

∨
i∈{1..k}\{i′,i′′} di

)
if k > µ

where (i′, i′′) = argmax(dj′ � dj′′) for 1 ≤ j′, j′′ ≤ k

Widening [3] is used to ensure that the fixpoint analysis terminates. To main-
tain disjunctions in the widening process, selective widening [10] is required.

Definition 5 (Selective Widening). Given two disjunctive formulae φ1 =∨k
i=1 di and φ2 =

∨k
j=1 ej, the selective widening operation φ1Oφ2 is defined as

φ1Oφ2 = normalize(φ1Ôφ2) where φ1Ôφ2 is recursively defined as follows:

φ1Ôφ2 =

φ1 � φ2 if k = 1
(di′ � ej′) ∨ (

∨
i∈{1..k}\{i′} diÔ

∨
j∈{1..k}\{j′} ej) if k > 1

where (i′, j′) = argmax(di′′ � ej′′) with 1 ≤ i′′, j′′ ≤ k

The algorithm to find the fixpoint for formulae with bag constraints shares
the same ideas with the one used in [10] to infer disjunctive postconditions. The
main challenges here are how we support planar affinity, selective widening, and
selective hulling to work with bag domain. Given a recursive function f , we start
with f0 = ⊥ (which is false in the bag domain) and then compute an ascending
chain f1, f2, ..., until we find two equally consecutive elements fi∗+1 = fi∗ . If
the current value in the chain is fi, the next item fi+1 will be calculated as
bottomup(f, fi, µ), which is either f(fi) or its approximation with the help of
selective hulling and widening operations. The first kind of operations helps us
achieve disjunctive fixpoint while the second kind ensures that the chain will
converge. Algorithm 1 shows how we can obtain fi+1 from f , fi, and µ.

Algorithm 1: Calculating fi+1 = bottomup(f, fi, µ)

ffi ← normalize(f(fi));1

if bffic < µ then2

return ffi ;3

else if fi = ⊥ or b⊕µffic < µ or bfic < µ then4

return ⊕µffi ;5

else6

return fiO(⊕µffi);7

First, we normalize the result of f(fi) to achieve ffi , which is a candidate
for fi+1. If bffic < µ, we return ffi , otherwise we need to find a suitable ap-
proximation of ffi that has no more than µ disjuncts. If fi = ⊥ or b⊕µffic < µ,
the approximation is ⊕µffi . If the two previous conditions fail, we have fi 6= ⊥
and b⊕µffic = µ. At this point, the approximation will depend on bfic be-
cause selective widening only works with two formulae that have the same num-
ber of disjuncts. Therefore, if bfic < µ, we still return ⊕µffi . Finally, when
b⊕µffic = bfic = µ holds, the best approximation is fiO(⊕µffi), which not only
maintains up to µ disjuncts but also contributes to the convergence of the chain.

4 Experimental results

We tested our tool on a set of methods from the Ocaml’s List library. The tool
takes the abstraction of each (possibly recursive) function and a number µ, denot-
ing the maximum number of disjuncts allowed during the fixpoint inference, as its
arguments and returns a corresponding fixpoint. We also measured the running-
time of the analysis process. These results can be found in Appendix B. The
grammar form of quantified bag formulae and inference rules used (by our tool)
are detailed in http://loris-7.ddns.comp.nus.edu.sg/˜project/fixbag/.

We have encountered several examples where disjunctive analysis can obtain
more precise fixpoints than conjunctive analysis. Conjunctive analysis can be
simulated using µ = 1. In general, each analyzed function has an upper bound
of µ; increasing µ over this bound does not help achieve more precise fixpoints
and does not affect the analysis time.

5 Related Works and Conclusion

Libraries to support abstract interpretation are popular for program analysis
systems, but they are focused mostly on the numeric domains [8, 1]. In the non-
numeric domains, abstract interpretation tools have been developed for shape
analysis [7] and for constraint-based analysis [6]. The former is for discovering
data shapes of heap-manipulating programs rather than their pure properties;
and are thus focused on program codes rather than logical formula. The latter
is meant as a scalable tool for flow-based constraints, rather than for analyzing
collections. Both systems do not automatically handle quantified formula and
have restricted use of disjunctive formulae.

We have built a stand-alone abstract interpretation tool for quantified bag
domain. Our use of simplification and propagation techniques is inspired from
CHR [5], while the use of affinity-based hulling and widening is targeted at more
precise disjunctive fixpoints. Our experiments on a code library have shown that
our tool is capable of efficiently analyzing the collection properties for non-trivial
functions.

References

1. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. SCP, 72:3–21, June 2008.

2. Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points. In POPL’77, pages 238–252, 1977.

3. Patrick Cousot and Radhia Cousot. Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation. In PLILP, pages 269–295,
1992.

4. Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of Linear Restraints
Among Variables of a Program. In POPL’78, pages 84–96, 1978.

5. Thom W. Frühwirth. Theory and Practice of Constraint Handling Rules. Journal
of Logic Programming, 37(1-3):95–138, 1998.

6. John Kodumal and Alexander Aiken. Banshee: A Scalable Constraint-Based Anal-
ysis Toolkit. In SAS’05, pages 218–234, 2005.

7. Tal Lev-Ami and Shmuel Sagiv. TVLA: A System for Implementing Static Anal-
yses. In SAS’00, pages 280–301, 2000.

8. Antoine Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Com-
putation, 19:31–100, March 2006.

9. Bertrand net and Antoine Miné. Apron: A Library of Numerical Abstract Domains
for Static Analysis. In CAV’09, pages 661–667, 2009.

10. Corneliu Popeea and Wei-Ngan Chin. Inferring Disjunctive Postconditions. In
ASIAN’06, pages 331–345, 2007.

11. Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and Aarti Gupta. Static
Analysis in Disjunctive Numerical Domains. In SAS’06, pages 3–17, 2006.

A Inference rules

This section describes a list of reference rules used in FixBag. Let R, S, T , U ,
V be general bags, {v1, ..., vn} be an explicit bag of n elements, and U [S ← T]
be a bag obtained by substituting T for S in U . In expression m1 ≤ |S| ≤ m2,
m1 may be 0 and m2 may be +∞; in that cases it is displayed as |S| ≤ m2 and
m1 ≤ |S|, respectively.

Table 1. List of propagation rules

RULE LHS RHS

EMPTY @ S = ∅ =⇒ S ⊆ >, S ∩ > = ∅, S − > = ∅, |S| = 0, ∀x ∈ S : >
INTER-1 @ R = S ∩ T =⇒ R ⊆ S, R ⊆ T
INTER-2 @ R ⊆ S ∩ T =⇒ R ⊆ S, R ⊆ T
MINUS-1 @ R = S − T =⇒ R ⊆ S
MINUS-2 @ R ⊆ S − T =⇒ R ⊆ S
UNION-1 @ R = S ∪ T =⇒ S ⊆ R, T ⊆ R
UNION-2 @ R ⊇ S ∪ T =⇒ S ⊆ R, T ⊆ R
TRANS @ R ⊆ S, S ⊆ T =⇒ R ⊆ T
SUBS-1 @ S = T, U = V =⇒ U[S ← T] = V, U[S ← T] = V [S ← T],

U[S ← T] = V [T ← S]

SUBS-2 @ S = T, U ⊆ V =⇒ U[S ← T] ⊆ V, U ⊆ V [S ← T],
U[S ← T] ⊆ V [S ← T], U[T ← S] ⊆ V [S ← T],
U[S ← T] ⊆ V [T ← S], S[V ← U] ⊆ T,
S ⊆ T [U ← V], S[V ← U] ⊆ T [U ← V]

IN @ S = U ∪ {v}, T = V ∪ {v} =⇒ S ∩ T = U ∩ V ∪ {v}, S − T = U − V
NOTIN @ S = U ∪ {v}, T = V =⇒ {v} ∩ T = ∅ | S ∩ T = U ∩ V, S − T = U − V ∪ {v}

QUAN-1 @ S = {x}, P (x) =⇒ ∀x ∈ S : P (x)

QUAN-2 @ S = {x}, P (x) =⇒ ∃x ∈ S : P (x)

QUAN-3 @ S ⊆ T, ∀x ∈ T : P (x) =⇒ ∀x ∈ S : P (x)

QUAN-4 @ S ⊆ T, ∃x ∈ S : P (x) =⇒ ∃x ∈ T : P (x)

QUAN-5 @ ∀x ∈ S : P (x), ∀x ∈ T : P (x), R = S ∪ T=⇒ ∀x ∈ R : P (x)

BASE @ S = {v1, ..., vn} =⇒ |S| = n

INF-1 @ S = T =⇒ |S| = |T |
INF-2 @ S ⊆ T =⇒ |S| ≤ |T |
INF-3 @ S = R ∪ T =⇒ |S| = |R| + |T |
MUL @ |S| = m, |T | = m × n =⇒ |T | = n × |S|

Table 2. List of simplification rules

RULE LHS RHS

EMP-1 @ S ⊆ > ⇐⇒ true

EMP-2 @ ∅ ⊆ R ⇐⇒ true

EMP-3 @ S = ∅ ⇐⇒ |S| = 0

SUB-1 @ S ∪ > ⇐⇒ >
SUB-2 @ S ∩ > ⇐⇒ S

SUB-3 @ S − > ⇐⇒ ∅
SUB-4 @ S − ∅ ⇐⇒ S

SUB-5 @ ∅ − S ⇐⇒ ∅
REF @ S = S ⇐⇒ true

ANT @ S ⊆ R, R ⊆ S ⇐⇒ S = R

SIZE @ |S| ≥ 0 ⇐⇒ true

B Experimental data

This Appendix contains our experimental data set. We provide them here to
illustrate the capability and performance of our tool. Table 3 shows the abstrac-
tions for a list of small but challenging functions successfully analyzed by our
tool. Functions 1-28 make use of a variety of different formulae over the bag do-
main, while functions 29-35 and 36-39 are, respectively, cases where quantified
bag formulae and size properties are automatically inferred by our tool.

Table 3. List of input functions

No. Function

1 inter1(S1, S2, S3) := (S1 = {} ∧ S3 = {}) ∨
∃v : S1 = {v}∪S1a∧S2 = {v}∪S2a∧ inter1(S1a, S2a, S3a)∧S3 = {v}∪S3a∨
∃v : S1 = {v} ∪ S1a ∧ S2 ∩ {v} = {} ∧ inter1(S1a, S2, S3)

2 inter2(S1, S2, S3) := (S1 = {} ∧ S3 = {}) ∨
(∃v : S1 = {v}∪S1a∧S2 = {v}∪S2a∧inter2(S1a, S2a, S3a)∧S3 = {v}∪S3a)∨
(∃v : S1 = {v} ∪ S1a ∧ S2 = S2a ∧ inter2(S1a, S2a, S3))

3 decomp1(S1, S2, S3) := (S1 = {} ∧ S2 = {} ∧ S3 = {}) ∨
(∃v : S1 = {v} ∪ S1a ∧ S3 = {v} ∪ S3a ∧ decomp1(S1a, S2, S3a)) ∨
(∃v : S2 = {v} ∪ S2a ∧ S3 = {v} ∪ S3a ∧ decomp1(S1, S2a, S3a))

4 flatten1(S1, S2) := (S1 = {} ∧ S2 = {}) ∨ (S1 = S ∪ S1a ∧ S2 = S ∪ S2a ∧ flatten1(S1a, S2a))
5 flatten2(S1, S2) := (S1 = {}∧S2 = {})∨∃v : S1 = S1a ∪{v}∧S2 = S2a ∪{v}∧flatten2(S1a, S2a)
6 flatten3(S1, S2) := (S1 = {} ∧ S2 = {}) ∨ ∃S : S1 = S ∪ S1a ∧ S2 = S ∪ S2a ∧ flatten3(S1a, S2a)
7 append(S1, S2, S3) := (S1 = {}∧S3 = S2)∨∃v : S1 = {v}∪S1a∧append(S1a, S2, S3a)∧S3 = {v}∪S3a
8 fil1(S1, S2) := S2 = {} ∨ ∃v : S1 = {v} ∪ S1a ∧ fil1(S1a, S2a) ∧ S2 = {v} ∪ S2a ∨

∃v : S1 = {v} ∪ S1a ∧ fil1(S1a, S2a) ∧ S2 = S2a
9 fil2(S1, S2) := S2 = {} ∨ ∃v : S1 = {v} ∪ S1a ∧ fil2(S1a, S2a) ∧ (S2 = {v} ∪ S2a ∨ S2 = S2a)
10 id(S1, S2) := (S1 = {} ∧ S2 = S1) ∨ ∃v : S1 = {v} ∪ S1a ∧ id(S1a, S2a) ∧ S2 = {v} ∪ S2a
11 part1(S1, S2, S3) := (S1 = {} ∧ S2 = {} ∧ S3 = {}) ∨ (∃v : S1 = {v} ∪ S1a ∧ part1(S1a, S2a, S3a) ∧

((S2 = S2a ∧ S3 = {v} ∪ S3a) ∨ (S2 = {v} ∪ S2a ∧ S3 = S3a)))
12 revit(S1, S2, R) := (S1 = {}∧S2 = R)∨ (∃v : revit(S1a, S2a,R)∧S1 = S1a∪{v}∧S2a = S2∪{v})
13 head1(S1, S3) := (∃S2 : (∃v : S1 = {v} ∪ S2 ∧ S3 = {v}))
14 head2(S1, v) := S1 = {v} ∪ S2
15 head3(S1, S3) := ∃v : S1 = {v} ∪ S2 ∧ S3 = {v}
16 head4(S1, S2, S3) := ∃v : S1 = {v} ∪ S2 ∧ S3 = {v}
17 tailtwice(S1, S3) := (∃w : (∃v : S1 = {v} ∪ S2 ∧ S2 = {w} ∪ S3))
18 tail(S1, S2) := ∃v : S1 = {v} ∪ S2
19 disj(S0, S1, S2, S3) := (S2 = {} ∧ S3 = {} ∧ S1 = {}) ∨

∃v : S0 = {} ∧ S3 = S3a ∪ {v} ∧ disj(S0, S1a, S2, S3a) ∧ S1 = S1a ∪ {v} ∨
∃v : (!(S0 = {})) ∧ S2 = S2a ∪ {v} ∧ disj(S0, S1a, S2a, S3) ∧ S1 = S1a ∪ {v}

20 inters1(S1, S2, S3) := (S1 = {} ∧ S3 = {}) ∨
(∃v : S1 = {v}∪S1a∧S2 = {v}∪S2a∧inters1(S1a, S2a, S3a)∧S3 = {v}∪S3a)∨
(∃v : S1 = {v} ∪ S1a ∧ inters1(S1a, S2, S3))

21 inters2(S1, S2, S3) := (S1 = {} ∧ S3 = {}) ∨ ∃v : S1 = {v} ∪ S1a ∧ inters2(S1a, S2, S3)
22 inters3(S1, S2, S3) := (S1 = {} ∧ S3 = {}) ∨

∃v : S1 = {v}∪S1a ∧S2 = {v}∪S2a ∧ inters3(S1a, S2a, S3a)∧S3 = {v}∪S3a
23 decomps1(S1, S2, S3) := S1 = {} ∧ S2 = {} ∧ S3 = {} ∨

(∃v : S2 = {v} ∪ S2a ∧ S3 = {v} ∪ S3a ∧ decomps1(S1, S2a, S3a))
24 decomps2(S1, S2, S3) := S1 = {} ∧ S2 = {} ∧ S3 = {} ∨

(∃v : S1 = {v} ∪ S1a ∧ S3 = {v} ∪ S3a ∧ decomps2(S1a, S2, S3a))
25 fils1(S1, S2) := S2 = {} ∨ ∃v : S1 = {v} ∪ S1a ∧ fils1(S1a, S2a) ∧ S2 = S2a
26 fils2(S1, S2) := S2 = {} ∨ ∃v : S1 = {v} ∪ S1a ∧ fils2(S1a, S2a) ∧ S2 = {v} ∪ S2a
27 parts1(S1, S2, S3) := (S1 = {} ∧ S2 = {} ∧ S3 = {}) ∨

(∃v : S1 = {v} ∪ S1a ∧ parts1(S1a, S2a, S3a) ∧ S2 = S2a ∧ S3 = {v} ∪ S3a)
28 parts2(S1, S2, S3) := (S1 = {} ∧ S2 = {} ∧ S3 = {}) ∨

(∃v : S1 = {v} ∪ S1a ∧ parts2(S1a, S2a, S3a) ∧ S2 = {v} ∪ S2a ∧ S3 = S3a)

29 part(S1, S2, S3, p) := (S1 = {} ∧ S2 = {} ∧ S3 = {})∨ (∃v : S1 = {v} ∪ S1a ∧ part(S1a, S2a, S3a, p)∧
((S2 = S2a ∧ S3 = {v} ∪ S3a ∧ p > v)∨ (S2 = {v} ∪ S2a ∧ S3 = S3a ∧ v >= p)))

30 member(S, p, res) := (S = {}∧!$res) ∨ (∃v : S = {v} ∪ S1 ∧ ((v = p ∧ $res) ∨ (v 6=
p ∧member(S1, p, res))))

31 filter(S1, f, S2) := (S1 = {} ∧ S2 = {})∨ (∃v : S1 = {v} ∪ S1a ∧ filter(S1a, f, S2a)∧ ((f(v)∧ S2 =
{v} ∪ S2a) ∨ (!f(v) ∧ S2 = S2a)))

32 forall1(f, S, res) := (S = {}∧$res)∨∃v : S = {v}∪S1 ∧ ((forall1(f, S1, res)∧f(v))∨ (!f(v)∧!$res))
33 exists1(f, S, res) := (S = {}∧!$res)∨∃v : S = {v}∪S1 ∧ ((f(v)∧ $res)∨ (exists1(f, S1, res)∧!f(v)))
34 mem(a, S, res) := (S = {}∧!$res)∨∃v : S = {v}∪S1 ∧ ((mem(a, S1, res)∧ a 6= v)∨ (a = v∧ $res))
35 memAssoc(a, S, res) := (S = {}∧!$res) ∨ ∃v : S = {v} ∪ S1 ∧ v = a ∧ $res ∨

∃v : S = {v} ∪ S1 ∧ v 6= a ∧memAssoc(a, S1, res)

36 tran1(S,R, v2) := (R = {}∧S = {})∨(∃v : (tran1(S1, R1, v2)∧R = R1∪{v2}∪{v2}∧S = S1∪{v}))
37 tran2(S,R, v2) := (R = {} ∧ S = {})∨ (∃v : ((tran2(S1, R1, v2)∧R = R1 ∪ {v2})∧ S = S1 ∪ {v}))
38 tran3(S,R, v2) := (R = {} ∧ S = {}) ∨ (∃v : ((tran3(S1, R1, v2) ∧ R = R1) ∧ S = S1 ∪ {v}))
39 removeFst(a, S, R) := (S = {} ∧ R = {}) ∨ ∃v : S = S1 ∪ {v} ∧ a = v ∧ R = S1 ∨

∃v : S = S1 ∪ {v} ∧ removeFst(a, S1, R1) ∧ a 6= v ∧ R = {v} ∪ R1

Our test platform was a Pentium Dual Core 2.5 GHz system with 1GBytes
main memory, running Ubuntu 10.04. Table 4 summarizes the statistics obtained
for each function. Our tool uses µ to limit the number of disjuncts in the analyz-
ing process. For each value of µ, we calculated the fixpoint result and recorded
the time taken by our tool for inference.

Table 4. Statistics for fixpoint inference. Timings exclude parsing time and “–” means
a time or a fixpoint is similar to those from the immediate lower value of µ.

No.
Maximum number of disjuncts

µ = 1 µ = 2 µ = 3
fixpoint (secs) fixpoint (secs) fixpoint (secs)

1 S3 = S1 ∩ S2 0.35 – 1.06 – –
2 S3 = S1 ∩ S2 0.38 – 1.09 – –
3 S3 = S1 ∪ S2 0.82 – 2.85 – –
4 S1 = S2 0.01 – 0.06 – –
5 S1 = S2 0.01 – 0.06 – –
6 S1 = S2 0.01 – 0.06 – –
7 S3 = S1 ∪ S2 0.14 – 0.31 – –
8 S2 ⊆ S1 0.05 – 0.15 – –
9 S2 ⊆ S1 0.05 – 0.15 – –
10 S2 = S1 0.06 – 0.15 – –
11 S1 = S2 ∪ S3 2.45 – 5.43 – –
12 R = S1 ∪ S2 0.11 – 0.19 – –
13 S3 ⊆ S1 ∧ |S3| = 1 0.00 – 0.01 – –
14 {v} ⊆ S1 0.00 – 0.01 – –
15 S3 ⊆ S1 ∧ |S3| = 1 0.00 – 0.01 – –
16 S1 = S2 ∪ S3 ∧ |S3| = 1 0.00 – 0.01 – –
17 S3 ⊆ S1 ∧ |S1| ≥ 2 0.02 – 0.02 – –
18 S2 ⊆ S1 ∧ |S1| ≥ 1 0.00 – 0.01 – –
19 S1 = S2 ∪ S3 0.53 (S1 = S2 ∧ S3 = ∅ ∧ |S0| ≥ 1) ∨

(S0 = ∅ ∧ S1 = S3 ∧ S2 = ∅)
2.13 – –

20 S3 ⊆ S1 ∧ S3 ⊆ S2 0.20 – 0.71 – –
21 S3 = ∅ 0.01 – 0.02 – –
22 S1 ⊆ S2 ∧ S1 = S3 0.22 – 0.79 – –
23 S1 = ∅ ∧ S3 = S2 0.43 – 1.25 – –
24 S1 = S3 ∧ S2 = ∅ 0.41 – 1.22 – –
25 S2 = ∅ 0.02 – 0.02 – –
26 S2 ⊆ S1 0.03 – 0.12 – –
27 S1 = S3 ∧ S2 = ∅ 0.43 – 1.01 – –
28 S1 = S2 ∧ S3 = ∅ 0.45 – 0.94 – –

29 S1 = S2 ∪ S3 ∧ ∀x ∈ S2 : p ≤ x
∧ ∀x ∈ S3 : x < p

2.64 – 5.56 – –

30 > 0.00 (∃x ∈ S : x = p∧res)∨ (∀x ∈ S : x 6= p∧¬res) 0.01 – –
31 S2 ⊆ S1 ∧ ∀x ∈ S2 : f(x) ∧
∀x ∈ S1 − S2 : ¬f(x)

0.13 – 0.36 – –

32 > 0.01 (∀x ∈ S : f(x)∧ res)∨ (∃x ∈ S : ¬f(x)∧¬res) – – –
33 > 0.00 (∃x ∈ S : f(x)∧ res)∨ (∀x ∈ S : ¬f(x)∧¬res) 0.01 – –
34 > 0.01 (∃x ∈ S : a = x∧res)∨ (∀x ∈ S : a 6= x∧¬res) 0.02 – –
35 > 0.01 (∃x ∈ S : x = a∧res)∨ (∀x ∈ S : x 6= a∧¬res) 0.02 – –

36 ∀x ∈ R : x = v2 ∧ |R| = 2 × |S| 0.03 – 0.14 – –
37 ∀x ∈ R : x = v2 ∧ |S| = |R| 0.04 – 0.13 – –
38 R = ∅ 0.01 – 0.02 – –
39 R ⊆ S 0.01 (S = R ∧ ∀x ∈ S : a 6= x) ∨

(R ⊆ S ∧ ∃x ∈ S : a = x ∧ |S| = 1 + |R|)
0.15 – –

